1
|
Tuning the Solid Phase Fluorescence Emission from Long Wavelength Visible to Near-Infrared in Oxazol-5-One Derivatives: Structure-Property Relationship, Theoretical and Experimental Studies. J Fluoresc 2023:10.1007/s10895-023-03158-7. [PMID: 36763296 DOI: 10.1007/s10895-023-03158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/25/2023] [Indexed: 02/11/2023]
Abstract
Most of the fluorescent molecules among organic [Formula: see text]-conjugated materials show blue or green emission in the solid phase but few of them emit red-shifted visible and near-infrared light in the material science. To create molecules emitting for this feature, two π-conjugated oxazol-5-one derivatives containing donor (OCH3) and acceptor groups (NO2) were synthesized. Their optical and charge-transport properties were investigated through experimental and theoretical methods including the single crystal X-ray crystallography, Hirshfeld Surface Analysis, photophysical studies and Density Functional Theory (DFT), respectively. In addition, FT-IR, 1H-NMR, 13C-NMR spectroscopy, cyclic voltammetry (CV) measurements were performed. According to our results, both molecules may provide the significant pathway of development of long wavelength visible and red emissive features in solid phase with the aggregation induced enhanced emission (AIEE) properties particularly in the fields of OLEDs, optical communication, defence and bioimaging.
Collapse
|
2
|
Lončar B, Perin N, Mioč M, Boček I, Grgić L, Kralj M, Tomić S, Stojković MR, Hranjec M. Novel amino substituted tetracyclic imidazo[4,5-b]pyridine derivatives: Design, synthesis, antiproliferative activity and DNA/RNA binding study. Eur J Med Chem 2021; 217:113342. [PMID: 33751978 DOI: 10.1016/j.ejmech.2021.113342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/06/2023]
Abstract
A novel series of tetracyclic imidazo[4,5-b]pyridine derivatives was designed and synthesized as potential antiproliferative agents. Their antiproliferative activity against human cancer cells was influenced by the introduction of chosen amino side chains on the different positions on the tetracyclic skeleton and particularly, by the position of N atom in the pyridine nuclei. Thus, the majority of compounds showed improved activity in comparison to standard drug etoposide. Several compounds showed pronounced cytostatic effect in the submicromolar range, especially on HCT116 and MCF-7 cancer cells. The obtained results have confirmed the significant impact of the position of N nitrogen in the pyridine ring on the enhancement of antiproliferative activity, especially for derivatives bearing amino side chains on position 2. Thus, regioisomers 6, 7 and 9 showed noticeable enhancement of activity in comparison to their counterparts 10, 11 and 13 with IC50 values in a nanomolar range of concentration (0.3-0.9 μM). Interactions with DNA (including G-quadruplex structure) and RNA were influenced by the position of amino side chains on the tetracyclic core of imidazo[4,5-b]pyridine derivatives and the ligand charge. Moderate to high binding affinities (logKs = 5-7) obtained for selected imidazo[4,5-b]pyridine derivatives suggest that DNA/RNA are potential cell targets.
Collapse
Affiliation(s)
- Borka Lončar
- Pliva d.o.o., odjel TAPI I&R, Unapređenje tehnoloških procesa i Podrška proizvodnji, Croatia
| | - Nataša Perin
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000, Zagreb, Croatia
| | - Marija Mioč
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Ida Boček
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000, Zagreb, Croatia
| | - Lea Grgić
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička cesta 54, 10 000, Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Ruđer Bošković Institute, Bijenička cesta 54, HR-10000, Zagreb, Croatia
| | - Sanja Tomić
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička cesta 54, 10 000, Zagreb, Croatia
| | - Marijana Radić Stojković
- Ruđer Bošković Institute, Division of Organic Chemistry and Biochemistry, Bijenička cesta 54, 10 000, Zagreb, Croatia.
| | - Marijana Hranjec
- Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Marulićev trg 19, HR-10000, Zagreb, Croatia.
| |
Collapse
|
3
|
Li L, Wang Q, Li W, Yao YN, Wu L, Hu B. Comprehensive comparison of ambient mass spectrometry with desorption electrospray ionization and direct analysis in real time for direct sample analysis. Talanta 2019; 203:140-146. [DOI: 10.1016/j.talanta.2019.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
|
4
|
Application of the Extended HOMED (Harmonic Oscillator Model of Aromaticity) Index to Simple and Tautomeric Five-Membered Heteroaromatic Cycles with C, N, O, P, and S Atoms. Symmetry (Basel) 2019. [DOI: 10.3390/sym11020146] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The geometry-based HOMA (Harmonic Oscillator Model of Aromaticity) descriptor, based on the reference compounds of different delocalizations of n- and π-electrons, can be applied to molecules possessing analogous bonds, e.g., only CC, only CN, only CO, etc. For compounds with different heteroatoms and a different number of CC, CX, XX, and XY bonds, its application leads to some discrepancies. For this reason, the structural descriptor was modified and the HOMED (Harmonic Oscillator Model of Electron Delocalization) index defined. In 2010, the HOMED index was parameterized for compounds with C, N and O atoms. For parametrization, the reference molecules of similar delocalizations of n- and π-electrons were employed. In this paper, the HOMED index was extended to compounds containing the CP, CS, NN, NP, PP, NO, NS, PO, and PS bonds. For geometrical optimization of all reference molecules and of all investigated heterocompounds, the same quantum–chemical method {B3LYP/6-311+G(d,p)} was used to eliminate errors of the HOMED estimation. For some tautomeric systems, the Gn methods were also employed to confirm tautomeric preferences. The extended HOMED index was applied to five-membered heterocycles, simple furan and thiophene, and their N and P derivatives as well as for tautomeric pyrrole and phosphole and their N and P derivatives. The effects of additional heteroatom(s) in the ring on the HOMED values for furan are parallel to those for thiophene. For pyrroles, aromaticity dictates the tautomeric preferences. An additional N atom in the ring only slightly affects the HOMED values for the favored and well delocalized NH tautomers. Significant changes take place for their rare CH forms. When intramolecular proton-transfer is considered for phosphole and its P derivatives, the PH tautomers seem to be favored only for 1,2,3-triphosphole/1,2,5-triphosphole and for 1,2,3,5-tetraphosphole. For other phospholes, the CH forms have smaller Gibbs energies than the PH isomers. For phosphazoles, the labile proton in the favored form is linked to the N atom. The PH forms have smaller HOMED indices than the NH tautomers but higher than the CH ones.
Collapse
|
5
|
Boruah JJ, Das SP. Solventless, selective and catalytic oxidation of primary, secondary and benzylic alcohols by a Merrifield resin supported molybdenum(vi) complex with H 2O 2 as an oxidant. RSC Adv 2018; 8:34491-34504. [PMID: 35548632 PMCID: PMC9086892 DOI: 10.1039/c8ra05969a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/26/2018] [Indexed: 12/03/2022] Open
Abstract
Here, we have described the synthesis, characterization and catalytic activity of a dioxo-molybdenum(vi) complex supported on functionalized Merrifield resin (MR-SB-Mo). The functionalization of Merrifield resin (MR) was achieved in two-steps viz. carbonylation (MR-C) and Schiff base formation (MR-SB). The compounds, MR-C, MR-SB and MR-SB-Mo, were characterized at each step of the synthesis by elemental, SEM, EDX, thermal, BET and different spectroscopic analysis. The catalyst, MR-SB-Mo, efficiently and selectively oxidized a wide variety of alcohols to aldehydes or ketones using 30% H2O2 as an oxidant with reasonably good TOF (660 h-1 in case of benzyl alcohol). The catalyst acted heterogeneously under solventless reaction conditions and did not lead to over oxidized products under optimized conditions. The catalyst afforded regeneration and can be reused for at least five reaction cycles without loss of efficiency and product selectivity. A reaction mechanism for the catalytic activity of MR-SB-Mo was proposed and a probable reactive intermediate species isolated.
Collapse
Affiliation(s)
- Jeena Jyoti Boruah
- Department of Chemistry, School of Science, RK University Bhavnagar Highway, Kasturbadham Rajkot-360020 Gujarat India +91-9678084296
- Department of Chemistry, Moridhal College Moridhal, Dhemaji-787057 Assam India
| | - Siva Prasad Das
- Department of Chemistry, School of Science, RK University Bhavnagar Highway, Kasturbadham Rajkot-360020 Gujarat India +91-9678084296
| |
Collapse
|
6
|
Zhang H, Wu W, Mo Y. Tautomerism of protonated imidazoles: A perspective from ab initio valence bond theory. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|