1
|
Liu L, Hakhverdyan M, Wallgren P, Vanneste K, Fu Q, Lucas P, Blanchard Y, de Graaf M, Oude Munnink BB, van Boheemen S, Bossers A, Hulst M, Van Borm S. An interlaboratory proficiency test using metagenomic sequencing as a diagnostic tool for the detection of RNA viruses in swine fecal material. Microbiol Spectr 2024; 12:e0420823. [PMID: 39162509 PMCID: PMC11448438 DOI: 10.1128/spectrum.04208-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/19/2024] [Indexed: 08/21/2024] Open
Abstract
Metagenomic shotgun sequencing (mNGS) can serve as a generic molecular diagnostic tool. An mNGS proficiency test (PT) was performed in six European veterinary and public health laboratories to detect porcine astroviruses in fecal material and the extracted RNA. While different mNGS workflows for the generation of mNGS data were used in the different laboratories, the bioinformatic analysis was standardized using a metagenomic read classifier as well as read mapping to selected astroviral reference genomes to assess the semiquantitative representation of astrovirus species mixtures. All participants successfully identified and classified most of the viral reads to the two dominant species. The normalized read counts obtained by aligning reads to astrovirus reference genomes by Bowtie2 were in line with Kraken read classification counts. Moreover, participants performed well in terms of repeatability when the fecal sample was tested in duplicate. However, the normalized read counts per detected astrovirus species differed substantially between participants, which was related to the different laboratory methods used for data generation. Further modeling of the mNGS data indicated the importance of selecting appropriate reference data for mNGS read classification. As virus- or sample-specific biases may apply, caution is needed when extrapolating this swine feces-based PT for the detection of other RNA viruses or using different sample types. The suitability of experimental design to a given pathogen/sample matrix combination, quality assurance, interpretation, and follow-up investigation remain critical factors for the diagnostic interpretation of mNGS results. IMPORTANCE Metagenomic shotgun sequencing (mNGS) is a generic molecular diagnostic method, involving laboratory preparation of samples, sequencing, bioinformatic analysis of millions of short sequences, and interpretation of the results. In this paper, we investigated the performance of mNGS on the detection of porcine astroviruses, a model for RNA viruses in a pig fecal material, among six European veterinary and public health laboratories. We showed that different methods for data generation affect mNGS performance among participants and that the selection of reference genomes is crucial for read classification. Follow-up investigation remains a critical factor for the diagnostic interpretation of mNGS results. The paper contributes to potential improvements of mNGS as a diagnostic tool in clinical settings.
Collapse
Affiliation(s)
- Lihong Liu
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden
| | | | - Per Wallgren
- Department of Animal Health and Antimicrobial Strategies, Swedish Veterinary Agency, Uppsala, Sweden
| | - Kevin Vanneste
- Department of Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Qiang Fu
- Department of Transversal activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Pierrick Lucas
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Yannick Blanchard
- Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health Safety, Ploufragan, France
| | - Miranda de Graaf
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Bas B Oude Munnink
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander van Boheemen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Alex Bossers
- Department of Epidemiology, Bioinformatics and Animal models, Wageningen BioVeterinary Research, Wageningen University & Research, Lelystad, the Netherlands
| | - Marcel Hulst
- Department of Epidemiology, Bioinformatics and Animal models, Wageningen BioVeterinary Research, Wageningen University & Research, Lelystad, the Netherlands
| | - Steven Van Borm
- Department of Avian Virology and Immunology, Sciensano, Ukkel, Belgium
| |
Collapse
|
2
|
Jagannathan R, Anand S, Hogan J, Mandal S, Kondal D, Gupta R, Patel SA, Anjana RM, Deepa M, Ali MK, Mohan V, Tandon N, Narayan KV, Prabhakaran D. Estimated glomerular filtration rate trajectories in south Asians: Findings from the cardiometabolic risk reduction in south Asia study. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2022; 6:100062. [PMID: 37383342 PMCID: PMC10305991 DOI: 10.1016/j.lansea.2022.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
Background Few longitudinal data characterize kidney function decline among South Asians, one of the world's largest population groups. We aimed to identify estimated glomerular filtration rate (eGFR) trajectories in a population-based cohort from India and assess predictors of rapid kidney function decline. Methods We used 6-year longitudinal data from participants of a population-representative study from Delhi and Chennai, India who had at least two serum creatinine measures and baseline CKD-EPI eGFR> 60 ml/min/1.73m2 (n=7779). We used latent class trajectory modeling to identify patterns of kidney function trajectory (CKD-EPI eGFR) over time. In models accounting for age, sex, education, and city, we tested the association between 15 hypothesized risk factors and rapid kidney function decline. Findings Baseline mean eGFR was 108 (SD 16); median eGFR was 110 [IQR: 99-119] ml/min/1.73m2. Latent class trajectory modeling and functional characterization identified three distinct patterns of eGFR: class-1 (no decline; 58%) annual eGFR change 0.2 [0.1, 0.3]; class-2 (slow decline; 40%) annual eGFR change -0.2 [-0.4, -0.1], and class-3 (rapid decline; 2%) annual eGFR change -2.7 [-3.4, -2.0] ml/min/1.73m2. Albuminuria (>30 mg/g) was associated with rapid eGFR decline (OR for class-3 vs class-1: 5.1 [95% CI: 3.2; 7.9]; class-3 vs. class-2: 4.3 [95% CI:2.7; 6.6]). Other risk factors including self-reported diabetes, cardiovascular disease, peripheral arterial disease, and metabolic biomarkers such as HbA1c and systolic blood pressure were associated with rapid eGFR decline phenotype but potential 'non-traditional' risk factors such as manual labor or household water sources were not. Interpretation Although mean and median eGFRs in our population-based cohort were higher than those reported in European cohorts, we found that a sizeable number of adults residing in urban India are experiencing rapid kidney function decline. Early and aggressive risk modification among persons with albuminuria could improve kidney health among South Asians. Funding The CARRS study has been funded with federal funds from the National Heart, Lung, and Blood Institute, National Institutes of Health, under Contract No. HHSN2682009900026C and P01HL154996. Dr. Anand was supported by NIDDK K23DK101826 and R01DK127138.
Collapse
Affiliation(s)
- Ram Jagannathan
- Emory University School of Medicine, Division of Hospital Medicine, Atlanta, GA, United States
| | - Shuchi Anand
- Centers for Chronic Disease Control, India
- Stanford University School of Medicine, Division of Nephrology
| | - Julien Hogan
- Department of Surgery, Emory Transplant Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Siddhartha Mandal
- Centers for Chronic Disease Control, India
- Public Health Foundation of India, New Delhi, India
| | | | - Ruby Gupta
- Centers for Chronic Disease Control, India
| | - Shivani A. Patel
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Ranjit Mohan Anjana
- Department of Family and Preventive Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Mohan Deepa
- Department of Family and Preventive Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Mohammed K. Ali
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
- Madras Diabetes Research Foundation, Chennai, India
| | - Viswanathan Mohan
- Department of Family and Preventive Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Nikhil Tandon
- Department of Endocrinology & Metabolism, All India Institute of Medical Sciences, Delhi, India
| | - K.M. Venkat Narayan
- Hubert Department of Global Health, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Dorairaj Prabhakaran
- Centers for Chronic Disease Control, India
- Public Health Foundation of India, New Delhi, India
| |
Collapse
|
3
|
Opportunities and Limitations of Molecular Methods for Studying Bat-Associated Pathogens. Microorganisms 2022; 10:microorganisms10091875. [PMID: 36144476 PMCID: PMC9502413 DOI: 10.3390/microorganisms10091875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/03/2023] Open
Abstract
Bats have been identified as reservoirs of zoonotic and potentially zoonotic pathogens. Significant progress was made in the field of molecular biology with regard to infectious diseases, especially those that infect more than one species. Molecular methods, sequencing and bioinformatics have recently become irreplaceable tools in emerging infectious diseases research and even outbreak prediction. Modern methods in the molecular biology field have shed more light on the unique relationship between bats and viruses. Here we provide readers with a concise summary of the potential and limitations of molecular methods for studying the ecology of bats and bat-related pathogens and microorganisms.
Collapse
|
4
|
de Vries JJC, Brown JR, Couto N, Beer M, Le Mercier P, Sidorov I, Papa A, Fischer N, Oude Munnink BB, Rodriquez C, Zaheri M, Sayiner A, Hönemann M, Cataluna AP, Carbo EC, Bachofen C, Kubacki J, Schmitz D, Tsioka K, Matamoros S, Höper D, Hernandez M, Puchhammer-Stöckl E, Lebrand A, Huber M, Simmonds P, Claas ECJ, López-Labrador FX. Recommendations for the introduction of metagenomic next-generation sequencing in clinical virology, part II: bioinformatic analysis and reporting. J Clin Virol 2021; 138:104812. [PMID: 33819811 DOI: 10.1016/j.jcv.2021.104812] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/20/2021] [Indexed: 12/11/2022]
Abstract
Metagenomic next-generation sequencing (mNGS) is an untargeted technique for determination of microbial DNA/RNA sequences in a variety of sample types from patients with infectious syndromes. mNGS is still in its early stages of broader translation into clinical applications. To further support the development, implementation, optimization and standardization of mNGS procedures for virus diagnostics, the European Society for Clinical Virology (ESCV) Network on Next-Generation Sequencing (ENNGS) has been established. The aim of ENNGS is to bring together professionals involved in mNGS for viral diagnostics to share methodologies and experiences, and to develop application guidelines. Following the ENNGS publication Recommendations for the introduction of mNGS in clinical virology, part I: wet lab procedure in this journal, the current manuscript aims to provide practical recommendations for the bioinformatic analysis of mNGS data and reporting of results to clinicians.
Collapse
Affiliation(s)
- Jutte J C de Vries
- Clinical Microbiological Laboratory, department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Julianne R Brown
- Microbiology, Virology and Infection Prevention & Control, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom.
| | - Natacha Couto
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| | - Martin Beer
- Friedrich-Loeffler-Institute, Institute of Diagnostic Virology, Greifswald, Germany.
| | | | - Igor Sidorov
- Clinical Microbiological Laboratory, department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - Anna Papa
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Greece.
| | - Nicole Fischer
- University Medical Center Hamburg-Eppendorf, UKE Institute for Medical Microbiology, Virology and Hygiene, Germany.
| | | | - Christophe Rodriquez
- Department of Virology, University hospital Henri Mondor, Assistance Public des Hopitaux de Paris, Créteil, France.
| | - Maryam Zaheri
- Institute of Medical Virology, University of Zurich, Switzerland.
| | - Arzu Sayiner
- Dokuz Eylul University, Medical Faculty, Department of Medical Microbiology, Izmir, Turkey.
| | - Mario Hönemann
- Institute of Virology, Leipzig University, Leipzig, Germany.
| | - Alba Perez Cataluna
- Department of Preservation and Food Safety Technologies, IATA-CSIC, Paterna, Valencia, Spain.
| | - Ellen C Carbo
- Clinical Microbiological Laboratory, department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | | | - Jakub Kubacki
- Institute of Virology, University of Zurich, Switzerland.
| | - Dennis Schmitz
- RIVM National Institute for Public Health and Environment, Bilthoven, the Netherlands.
| | - Katerina Tsioka
- Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Greece.
| | - Sébastien Matamoros
- Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, the Netherlands.
| | - Dirk Höper
- Friedrich-Loeffler-Institute, Institute of Diagnostic Virology, Greifswald, Germany.
| | - Marta Hernandez
- Laboratory of Molecular Biology and Microbiology, Instituto Tecnologico Agrario de Castilla y Leon, Valladolid, Spain.
| | | | | | - Michael Huber
- Institute of Medical Virology, University of Zurich, Switzerland.
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Eric C J Claas
- Clinical Microbiological Laboratory, department of Medical Microbiology, Leiden University Medical Center, Leiden, the Netherlands.
| | - F Xavier López-Labrador
- Virology Laboratory, Genomics and Health Area, Centre for Public Health Research (FISABIO-Public Health), Valencia, Spain; Department of Microbiology, Medical School, University of Valencia, Spain; CIBERESP, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Schmidt-Posthaus H, Koch M, Seuberlich T, Birrer C, Hirschi R, Kugler M. Mysterious syndrome causing high mortality in wild brown trout in Eastern Switzerland, pathology and search for a possible cause. JOURNAL OF FISH DISEASES 2020; 43:1317-1324. [PMID: 32830324 DOI: 10.1111/jfd.13241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Since 2016, annually occurring species-specific die-offs of brown trout (Salmo trutta fario) occurred in the Thur River, situated in the Eastern part of Switzerland. These events lead to drastically reduced population densities in the impacted river regions. Clinical signs in brown trout and mortality were restricted to few weeks in August/September. To characterize the syndrome and to find possible causes, from end of March to November 2018, one-year-old brown trout (Salmo trutta fario) and rainbow trout (Oncorhynchus mykiss) were exposed to water from Thur River, fish were sampled regularly and screened for infectious agents, including viral metagenomics, and pathology was described. Starting approximately four months post-exposure, brown trout showed severe lymphohistiocytic pancarditis and necrotizing and haemorrhagic hepatitis. These lesions were recorded until the end of the experiment in November. Rainbow trout were not affected at any point in time. No infectious agents could be identified so far as cause of disease, especially no viral aetiology. Even if pathogenesis and pathology point in the direction of an infectious agent, a causative relationship could not be confirmed and aetiology remains unclear.
Collapse
Affiliation(s)
- Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University Bern, Bern, Switzerland
| | - Michel Koch
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University Bern, Bern, Switzerland
| | - Torsten Seuberlich
- Division of Neurological Sciences, Department of Clinical Research and Veterinary Public Health, Vetsuisse Faculty, University Bern, Bern, Switzerland
| | - Christoph Birrer
- Canton St. Gallen, Department of Economic Affairs, Office for Nature, Hunting and Fisheries, St. Gallen, Switzerland
| | - Regula Hirschi
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University Bern, Bern, Switzerland
| | - Michael Kugler
- Canton St. Gallen, Department of Economic Affairs, Office for Nature, Hunting and Fisheries, St. Gallen, Switzerland
| |
Collapse
|
6
|
Van Borm S, Vanneste K, Fu Q, Maes D, Schoos A, Vallaey E, Vandenbussche F. Increased viral read counts and metagenomic full genome characterization of porcine astrovirus 4 and Posavirus 1 in sows in a swine farm with unexplained neonatal piglet diarrhea. Virus Genes 2020; 56:696-704. [PMID: 32880793 DOI: 10.1007/s11262-020-01791-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/21/2020] [Indexed: 12/18/2022]
Abstract
Neonatal diarrhea in piglets may cause major losses in affected pig herds. The present study used random high-throughput RNA sequencing (metagenomic next generation sequencing, mNGS) to investigate the virome of sows from a farm with persistent neonatal piglet diarrhea in comparison to two control farms without diarrhea problems. A variety of known swine gastrointestinal viruses was detected in the control farms as well as in the problem farm (Mamastrovirus, Enterovirus, Picobirnavirus, Posavirus 1, Kobuvirus, Proprismacovirus). A substantial increase in normalized viral read counts was observed in the affected farm compared to the control farms. The increase was attributable to a single viral species in each of the sampled sows (porcine astrovirus 4 and Posavirus 1). The complete genomes of a porcine astrovirus 4 and two co-infecting Posavirus 1 were de novo assembled and characterized. The 6734 nt single-stranded RNA genome of porcine astrovirus 4 (PoAstV-4) strain Belgium/2019 contains three overlapping open reading frames (nonstructural protein 1ab, nonstructural protein 1a, capsid protein). Posavirus 1 strains Belgium/01/2019 and Belgium/02/2019 have a 9814 nt single-stranded positive-sense RNA genome encoding a single open reading frame (polyprotein precursor) containing the five expected Picornavirales-conserved protein domains. The study highlights the potential of mNGS workflows to study unexplained neonatal diarrhea in piglets and contributes to the scarce availability of both PoAstV-4 and Posavirus-1 whole genome sequences from Western Europe.
Collapse
Affiliation(s)
- Steven Van Borm
- Department of Animal Infectious Diseases, Sciensano, Brussels, Belgium.
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Qiang Fu
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Dominiek Maes
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Alexandra Schoos
- Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
7
|
Van Borm S, Fu Q, Winand R, Vanneste K, Hakhverdyan M, Höper D, Vandenbussche F. Evaluation of a commercial exogenous internal process control for diagnostic RNA virus metagenomics from different animal clinical samples. J Virol Methods 2020; 283:113916. [PMID: 32574649 DOI: 10.1016/j.jviromet.2020.113916] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 12/20/2022]
Abstract
Metagenomic next generation sequencing (mNGS) is increasingly recognized as an important complementary tool to targeted human and animal infectious disease diagnostics. It is, however, sensitive to biases and errors that are currently not systematically evaluated by the implementation of quality controls (QC) for the diagnostic use of mNGS. We evaluated a commercial reagent (Mengovirus extraction control kit, CeraamTools, bioMérieux) as an exogenous internal control for mNGS. It validates the integrity of reagents and workflow, the efficient isolation of viral nucleic acids and the absence of inhibitors in individual samples (verified using a specific qRT-PCR). Moreover, it validates the efficient generation of viral sequence data in individual samples (verified by normalized mengoviral read counts in the metagenomic analysis). We show that when using a completely random metagenomics workflow: (1) Mengovirus RNA can be reproducibly detected in different animal sample types (swine feces and sera, wild bird cloacal swabs), except for tissue samples (swine lung); (2) the Mengovirus control kit does not contain other contaminating viruses that may affect metagenomic experiments (using a cutoff of minimum 1 Kraken classified read per million (RPM)); (3) the addition of 2.17 × 106Mengovirus copies/mL of sample does not affect the virome composition of pig fecal samples or wild bird cloacal swab samples; (4) Mengovirus Cq values (using as cutoff the upper limit of the 99 % confidence interval of Cq values for a given sample matrix) allow the identification of samples with poor viral RNA extraction or high inhibitor load; (5) Mengovirus normalized read counts (cutoff RPM > 1) allow the identification of samples where the viral sequences are outcompeted by host or bacterial target sequences in the random metagenomic workflow. The implementation of two QC testing points, a first one after RNA extraction (Mengoviral qRT-PCR) and a second one after metagenomic data analysis provide valuable information for the validation of individual samples and results. Their implementation in addition to external controls validating runs or experiments should be carefully considered for a given sample type and workflow.
Collapse
Affiliation(s)
- Steven Van Borm
- Department of Animal Infectious Diseases, Sciensano, Groeselenbergstraat 99, 1180, Brussels, Belgium.
| | - Qiang Fu
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Raf Winand
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Rue Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | | | - Dirk Höper
- FLI, Friedrich Löffler Institut, Südufer 10, 17493 Greifswald, Germany
| | - Frank Vandenbussche
- Department of Animal Infectious Diseases, Sciensano, Groeselenbergstraat 99, 1180, Brussels, Belgium
| |
Collapse
|
8
|
Ecology and epidemiology of rabies in humans, domestic animals and wildlife in Namibia, 2011-2017. PLoS Negl Trop Dis 2019; 13:e0007355. [PMID: 30990805 PMCID: PMC6486109 DOI: 10.1371/journal.pntd.0007355] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 04/26/2019] [Accepted: 04/02/2019] [Indexed: 12/24/2022] Open
Abstract
Rabies is a fatal zoonotic disease that causes a heavy burden on societies. Namibia, a country in southern Africa, is aiming at controlling the disease in its main reservoir, the domestic dog. To facilitate the implementation comprehensive information on the ecology and epidemiology of the disease and surveillance is of utmost importance. The study presented assesses the baseline data for both human and animal rabies surveillance in Namibia in recent times and establishes correlations with ecological and socio-economic data in order to provide an up-to-date picture on the epidemiology of rabies in Namibia. For instance, it was important to identify the main drivers in the epidemiology, and whether the control strategy by mass vaccination of dogs is undermined by cycles of rabies in wildlife. Rabies in humans was reported mainly from the Northern Communal Areas (NCAs), with a total of 113 cases from 2011 to 2017, representing an incidence of between 1.0 and 2.4 annual human rabies deaths per 100,000 inhabitants. Kavango, the region with the highest human rabies incidence was also the region with the lowest animal rabies surveillance intensity. Generally, the vast majority (77%) of dog samples originated from communal farm land, followed by urban areas (17%), while only a small fraction (3%) was submitted from freehold farm areas. In contrast, kudu and eland submissions were almost exclusively from freehold farmland (76%) and urban areas (19%), whereas the submission of cattle samples was evenly distributed among freehold farms (46%) and communal farm land (46%). The likelihood of sample submission decreased exponentially with distance to one of the two laboratories. Overall, 67% (N = 1,907) of all samples submitted tested rabies-positive, with the highest positivity rate observed in kudus (89%) and jackals (87%). The transmission cycle of rabies in dogs appears restricted to the northern communal areas of Namibia, whilst rabies in wildlife species is predominately reported from farmland in central Namibia, mostly affecting kudu (Tragelaphus strepsiceros) and livestock with a likely reservoir in wildlife canids such as jackals or bat-eared foxes. The analysis confirms the presence of two independent transmission cycles in Namibia with little geographic overlap, thus allowing for a sustainable control of rabies in dogs in the NCAs.
Collapse
|
9
|
Piscine Orthoreovirus 3 Is Not the Causative Pathogen of Proliferative Darkening Syndrome (PDS) of Brown Trout ( Salmo trutta fario). Viruses 2019; 11:v11020112. [PMID: 30696111 PMCID: PMC6410266 DOI: 10.3390/v11020112] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/18/2019] [Accepted: 01/25/2019] [Indexed: 12/17/2022] Open
Abstract
The proliferative darkening syndrome (PDS) is a lethal disease of brown trout (Salmo trutta fario) which occurs in several alpine Bavarian limestone rivers. Because mortality can reach 100%, PDS is a serious threat for affected fish populations. Recently, Kuehn and colleagues reported that a high throughput RNA sequencing approach identified a piscine orthoreovirus (PRV) as a causative agent of PDS. We investigated samples from PDS-affected fish obtained from two exposure experiments performed at the river Iller in 2008 and 2009. Using a RT-qPCR and a well-established next-generation RNA sequencing pipeline for pathogen detection, PRV-specific RNA was not detectable in PDS fish from 2009. In contrast, PRV RNA was readily detectable in several organs from diseased fish in 2008. However, similar virus loads were detectable in the control fish which were not exposed to Iller water and did not show any signs of the disease. Therefore, we conclude that PRV is not the causative agent of PDS of brown trout in the rhithral region of alpine Bavarian limestone rivers. The abovementioned study by Kuehn used only samples from the exposure experiment from 2008 and detected a subclinical PRV bystander infection. Work is ongoing to identify the causative agent of PDS.
Collapse
|
10
|
Chen ZQ, Huang JF, Ma LL, Zhang CL, Lei S. Usefulness of metagenomic analysis in differential diagnosis for pyoderma gangrenosum. J Int Med Res 2018; 46:3468-3473. [PMID: 29936877 PMCID: PMC6134661 DOI: 10.1177/0300060518780124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/10/2018] [Indexed: 02/05/2023] Open
Abstract
Pyoderma gangrenosum (PG) is a rare ulcerative inflammatory dermatosis easily confused with wound infection following surgery. There have been seven case reports of PG occurring after total knee arthroplasty (TKA), all of which used routine tissue culture for differential diagnosis. Notably, all previous cases involved delayed diagnosis. We report a case of PG after TKA where we used shotgun metagenomics for differential diagnosis. Metagenomic analysis is a new method that can be used for pathogen detection; it is fast and sensitive, compared with traditional culture. Early application of metagenomic analysis in cases of suspicious wound infection after surgery can detect the pathogen of the infection for target therapy; it can also exclude infection for differential diagnosis of non-infectious diseases, such as autoimmune disorders. This case is presented to support the use of metagenomic analysis by surgeons and physicians for early and rapid differential diagnosis in patients who exhibit postoperative wound infections.
Collapse
Affiliation(s)
- Zhe-Qi Chen
- Department of ICU, The First Affiliated Hospital of ZheJiang Chinese Medical University, Zhejiang Provincial Hospital of TCM, Hangzhou, China
| | - Jie-Feng Huang
- Department of Orthopedics, The First Affiliated Hospital of ZheJiang Chinese Medical University, Zhejiang Provincial Hospital of TCM, Hangzhou, China
| | - Li-Li Ma
- Department of Dermatology, The First Affiliated Hospital of ZheJiang Chinese Medical University, Zhejiang Provincial Hospital of TCM, Hangzhou, China
| | - Chun-Li Zhang
- Department of Pathology, The First Affiliated Hospital of ZheJiang Chinese Medical University, Zhejiang Provincial Hospital of TCM, Hangzhou, China
| | - Shu Lei
- Department of ICU, The First Affiliated Hospital of ZheJiang Chinese Medical University, Zhejiang Provincial Hospital of TCM, Hangzhou, China
| |
Collapse
|