1
|
Yang X, Luo X, Zhang Y, Zhang Z, OuYang X, Shi X, Lv X, Li F, Zhang S, Liu Y, Zhang D. Tomato chlorosis virus CPm protein is a pathogenicity determinant and suppresses host local RNA silencing induced by single-stranded RNA. Front Microbiol 2023; 14:1151747. [PMID: 37056753 PMCID: PMC10086252 DOI: 10.3389/fmicb.2023.1151747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
IntroductionTomato chlorosis virus (ToCV) is a typical member of the genus Crinivirus, which severely threatens Solanaceae crops worldwide. The CPm protein encoded by ToCV has been reported to be associated with virus transmission by vectors and is involved in RNA silencing suppression, while the mechanisms remain ambiguous.MethodsHere, ToCV CPm was ectopically expressed by a Potato virus X (PVX) vector and infiltrated into Nicotiana benthamiana wild-type and GFP-transgenic16c plants.ResultsThe phylogenetic analysis showed that the CPm proteins encoded by criniviruses were distinctly divergent in amino acid sequences and predicted conserved domains, and the ToCV CPm protein possesses a conserved domain homologous to the TIGR02569 family protein, which does not occur in other criniviruses. Ectopic expression of ToCV CPm using a PVX vector resulted in severe mosaic symptoms followed by a hypersensitive-like response in N. benthamiana. Furthermore, agroinfiltration assays in N. benthamiana wilt type or GFP-transgenic 16c indicated that ToCV CPm protein effectively suppressed local RNA silencing induced by single-stranded but not double-stranded RNA, which probably resulted from the activity of binding double-stranded but not single-stranded RNA by ToCV CPm protein.ConclusionTaken together, the results of this study suggest that the ToCV CPm protein possesses the dual activities of pathogenicity and RNA silencing, which might inhibit host post-transcriptional gene silencing (PTGS)-mediated resistance and is pivotal in the primary process of ToCV infecting hosts.
Collapse
Affiliation(s)
- Xiao Yang
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
| | - Xiangwen Luo
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Yu Zhang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Zhanhong Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Xian OuYang
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Xiaobin Shi
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
| | - Xiaoyuan Lv
- Technical Center of Changsha Customs, Changsha, Hunan, China
| | - Fan Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Songbai Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
- *Correspondence: Songbai Zhang,
| | - Yong Liu
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
- Yong Liu,
| | - Deyong Zhang
- Longping Branch, College of Biology, Hunan University, Changsha, Hunan, China
- Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, Hunan Plant Protection Institute, Hunan Academy of Agricultural Science, Changsha, Hunan, China
- Deyong Zhang,
| |
Collapse
|
2
|
Zhang Z, He H, Yan M, Zhao C, Lei C, Li J, Yan F. Widely targeted analysis of metabolomic changes of Cucumis sativus induced by cucurbit chlorotic yellows virus. BMC PLANT BIOLOGY 2022; 22:158. [PMID: 35361125 PMCID: PMC8969345 DOI: 10.1186/s12870-022-03555-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Plant metabolites play vital roles in regulating the behavior of herbivore insects. Virus infection can universally alter plant metabolites to manipulate the orientation and feeding behaviors of insect vector, to favor the transmission of virus. Thus, determining the differentially accumulated metabolites of plant upon virus infection could provide insights into understanding how the triple interactions among plant, virus and insect vector happens. Our previous studies have found that vector whitefly Bemisia tabaci (Gennadius, Hemiptera: Aleyrodidae) showed different orientation behavior and performance on CCYV-infected and healthy cucumber plants. Cucurbit chlorotic yellows virus (CCYV) is exclusively transmitted by B. tabaci in a semi-persistent mode. In this study, we take the CCYV, B. tabaci and cucumber as a research system to explore the functions of phyto-metabolites in the triple interactions. RESULTS A total of 612 metabolites changed upon CCYV infection were monitored. Metabolites mainly enriched in flavonoids, lipids, nucleotides and their derivatives. At 7 days post CCYV inoculation (dpi), the contents of lipids, terpenoids and flavonoids remarkably decreased, while amino acids, nucleotides and their derivatives notably up-accumulated. At 15 dpi, the accumulation of flavonoids were still significantly reduced upon CCYV infection, while lipids, amino acids, nucleotides and derivatives were remarkably enhanced. Most of significantly increased metabolites were lipids (lysophosphatidylethanolamine, LPE; lysophosphatidylcholine, LPC and their isomers). Also, the number of significantly changed metabolites increased with the infection period. However, only a few organic acids and phenolic acids showed difference between CCYV-infected and healthy cucumber plants. CONCLUSIONS CCYV infection repressed the defensive flavonoids, terpeneoids metabolism but triggered the lipids, amino acids and nucleotides metabolism with the inoculation period. This result suggests that CCYV-infection makes cucumber plants more susceptible for whiteflies attack and CCYV infection. The reduction of defensive comounds and the increase of amino acids may be partially responsible for enhancing feeding preference of whiteflies to CCYV-infected hosts. CCYV may hijacked lipid metabolism for virus replication and assembly.
Collapse
Affiliation(s)
- Zelong Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Haifang He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Minghui Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Caiyan Lei
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Jingjing Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| | - Fengming Yan
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002 Henan China
| |
Collapse
|
3
|
Di Minno A, Gelzo M, Stornaiuolo M, Ruoppolo M, Castaldo G. The evolving landscape of untargeted metabolomics. Nutr Metab Cardiovasc Dis 2021; 31:1645-1652. [PMID: 33895079 DOI: 10.1016/j.numecd.2021.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/08/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023]
Abstract
AIMS Untargeted Metabolomics is a "hypothesis-generating discovery strategy" that compares groups of samples (e.g., cases vs controls); identifies the metabolome and establishes (early signs of) perturbations. Targeted Metabolomics helped gather key information in life sciences and disclosed novel strategies for the treatment of major clinical entities (e.g., malignancy, cardiovascular diabetes mellitus, drug toxicity). Because of its relevance in biomarker discovery, attention is now devoted to improving the translational potential of untargeted Metabolomics. DATA SYNTHESIS Expertise in laboratory medicine and in bioinformatics helps solve challenges/pitfalls that may bias metabolite profiling in untargeted Metabolomics. Clinical validation (availability/reliability of analytical instruments) and profitability (how many people will use the test) are mandatory steps for potential biomarkers. Biomarkers to predict individual patient response, patient populations that will best respond to specific strategies and/or approaches for an optimal response to treatment are now being developed. Additional help is expected from professional, and regulatory Agencies as to guidelines for study design and data acquisition and analysis, to be applied from the very beginning of a project. Evidence from food, plant, human, environmental, and animal research argues for the need of miniaturized approaches that employ low-cost, easy to use, mobile devices. ELISA kits with such characteristics that employ targeted metabolites are already available. CONCLUSIONS Improving knowledge of the mechanisms behind the disease status (pathophysiology) will help untargeted Metabolomics gather a direct positive impact on welfare and industrial advancements, and fade uncertainties perceived by regulators/payers and patients concerning variables related to miniaturised instruments and user-friendly software and databases.
Collapse
Affiliation(s)
- Alessandro Di Minno
- Dipartimento di Farmacia, Università Degli Studi di Napoli "Federico II", Napoli, 80131, Italy; CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Mariano Stornaiuolo
- Dipartimento di Farmacia, Università Degli Studi di Napoli "Federico II", Napoli, 80131, Italy
| | - Margherita Ruoppolo
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate, Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy.
| |
Collapse
|
4
|
Carr JP, Donnelly R, Tungadi T, Murphy AM, Jiang S, Bravo-Cazar A, Yoon JY, Cunniffe NJ, Glover BJ, Gilligan CA. Viral Manipulation of Plant Stress Responses and Host Interactions With Insects. Adv Virus Res 2018; 102:177-197. [PMID: 30266173 DOI: 10.1016/bs.aivir.2018.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Do the alterations in plant defensive signaling and metabolism that occur in susceptible hosts following virus infection serve any purpose beyond directly aiding viruses to replicate and spread? Or indeed, are these modifications to host phenotype purely incidental consequences of virus infection? A growing body of data, in particular from studies of viruses vectored by whiteflies and aphids, indicates that viruses influence the efficiency of their own transmission by insect vectors and facilitate mutualistic relationships between viruses and their insect vectors. Furthermore, it appears that viruses may be able to increase the opportunity for transmission in the long term by providing reward to the host plants that they infect. This may be conditional, for example, by aiding host survival under conditions of drought or cold or, more surprisingly, by helping plants attract beneficial insects such as pollinators. In this chapter, we cover three main areas. First, we describe the molecular-level interactions governing viral manipulation of host plant biology. Second, we review evidence that virus-induced changes in plant phenotype enhance virus transmission. Finally, we discuss how direct and indirect manipulation of insects and plants might impact on the evolution of viruses and their hosts.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sanjie Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ana Bravo-Cazar
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ju-Yeon Yoon
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; Virology Unit, Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science, Rural Development Agency, Wanju, Republic of Korea
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|