1
|
Wang Q, Guo F, Jin Y, Ma Y. Applications of human organoids in the personalized treatment for digestive diseases. Signal Transduct Target Ther 2022; 7:336. [PMID: 36167824 PMCID: PMC9513303 DOI: 10.1038/s41392-022-01194-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Digestive system diseases arise primarily through the interplay of genetic and environmental influences; there is an urgent need in elucidating the pathogenic mechanisms of these diseases and deploy personalized treatments. Traditional and long-established model systems rarely reproduce either tissue complexity or human physiology faithfully; these shortcomings underscore the need for better models. Organoids represent a promising research model, helping us gain a more profound understanding of the digestive organs; this model can also be used to provide patients with precise and individualized treatment and to build rapid in vitro test models for drug screening or gene/cell therapy, linking basic research with clinical treatment. Over the past few decades, the use of organoids has led to an advanced understanding of the composition of each digestive organ and has facilitated disease modeling, chemotherapy dose prediction, CRISPR-Cas9 genetic intervention, high-throughput drug screening, and identification of SARS-CoV-2 targets, pathogenic infection. However, the existing organoids of the digestive system mainly include the epithelial system. In order to reveal the pathogenic mechanism of digestive diseases, it is necessary to establish a completer and more physiological organoid model. Combining organoids and advanced techniques to test individualized treatments of different formulations is a promising approach that requires further exploration. This review highlights the advancements in the field of organoid technology from the perspectives of disease modeling and personalized therapy.
Collapse
Affiliation(s)
- Qinying Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanying Guo
- School of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yutao Jin
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Abstract
Over the past decade, preclinical and clinical research have confirmed the essential role of interferons for effective host immunological responses to malignant cells. Type I interferons (IFNα and IFNβ) directly regulate transcription of >100 downstream genes, which results in a myriad of direct (on cancer cells) and indirect (through immune effector cells and vasculature) effects on the tumour. New insights into endogenous and exogenous activation of type I interferons in the tumour and its microenvironment have given impetus to drug discovery and patient evaluation of interferon-directed strategies. When combined with prior observations or with other effective modalities for cancer treatment, modulation of the interferon system could contribute to further reductions in cancer morbidity and mortality. This Review discusses new interferon-directed therapeutic opportunities, ranging from cyclic dinucleotides to genome methylation inhibitors, angiogenesis inhibitors, chemoradiation, complexes with neoantigen-targeted monoclonal antibodies, combinations with other emerging therapeutic interventions and associations of interferon-stimulated gene expression with patient prognosis - all of which are strategies that have or will soon enter translational clinical evaluation.
Collapse
|
4
|
Shen H, Wu N, Nanayakkara G, Fu H, Yang Q, Yang WY, Li A, Sun Y, Drummer Iv C, Johnson C, Shao Y, Wang L, Xu K, Hu W, Chan M, Tam V, Choi ET, Wang H, Yang X. Co-signaling receptors regulate T-cell plasticity and immune tolerance. Front Biosci (Landmark Ed) 2019; 24:96-132. [PMID: 30468648 DOI: 10.2741/4710] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We took an experimental database mining analysis to determine the expression of 28 co-signaling receptors in 32 human tissues in physiological/pathological conditions. We made the following significant findings: 1) co-signaling receptors are differentially expressed in tissues; 2) heart, trachea, kidney, mammary gland and muscle express co-signaling receptors that mediate CD4+T cell functions such as priming, differentiation, effector, and memory; 3) urinary tumor, germ cell tumor, leukemia and chondrosarcoma express high levels of co-signaling receptors for T cell activation; 4) expression of inflammasome components are correlated with the expression of co-signaling receptors; 5) CD40, SLAM, CD80 are differentially expressed in leukocytes from patients with trauma, bacterial infections, polarized macrophages and in activated endothelial cells; 6) forward and reverse signaling of 50% co-inhibition receptors are upregulated in endothelial cells during inflammation; and 7) STAT1 deficiency in T cells upregulates MHC class II and co-stimulation receptors. Our results have provided novel insights into co-signaling receptors as physiological regulators and potentiate identification of new therapeutic targets for the treatment of sterile inflammatory disorders.
Collapse
Affiliation(s)
- Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China
| | - Na Wu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, 110004, China,
| | - Gayani Nanayakkara
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University,Philadelphia, PA, 19140, U.S.A
| | - Hangfei Fu
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University,Philadelphia, PA, 19140, U.S.A
| | - Qian Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, U.S.A
| | - William Y Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, U.S.A
| | - Angus Li
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, U.S.A
| | - Yu Sun
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Lewis Katz School of Medicine at Temple University ,Philadelphia, PA, 19140, U.S.A
| | - Charles Drummer Iv
- Centers for Metabolic Disease Research, and Cardiovascular Research, and Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, U.S.A
| | - Candice Johnson
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University,Philadelphia, PA, 19140, U.S.A
| | - Ying Shao
- Centers for Metabolic Disease Research, Cardiovascular Research, & Thrombosis Research, Departments of Pharmacology, Lewis Katz School of Medicine at Temple University,Philadelphia, PA, 19140, U.S.A
| | - Luqiao Wang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, U.S.A
| | - Keman Xu
- Centers for Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research,Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, U.S.A
| | - Wenhui Hu
- Centers for Metabolic Disease Research, Department of Pathology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, U.S.A
| | - Marion Chan
- Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, U.S.A
| | - Vincent Tam
- Department of Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, U.S.A
| | - Eric T Choi
- Centers for Metabolic Disease Research, Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, U.S.A
| | - Hong Wang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, U.S.A
| | - Xiaofeng Yang
- Centers for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, U.S.A
| |
Collapse
|