1
|
Danso B, Fengling Y, Hua X, Zhang J, Chen J, Yao Y, Pozzolini M, Wang F, Xiao L, Ruixue H. Potential Inhibitors of metalloproteinases (MMPs) and phospholipases from Nemopilema nomurai jellyfish peptides: An in-silico Pharmacokinetics and Molecular Docking Studies. Toxicon 2025:108421. [PMID: 40412464 DOI: 10.1016/j.toxicon.2025.108421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/09/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Jellyfish stings, especially from Nemopilema nomurai, pose serious health risks due to its venom toxins like metalloproteinases (MMPs) and phospholipases A2 (PLAs A2). Thes toxin can induce severe reactions such as pain, tissue necrosis, inflammation, and in extreme cases, cardiac arrest. While the exact mechanisms of toxicity are not fully understood, MMPs and PLA2 enzymes are known to contribute significantly to tissue damage and inflammation. Thus, the inhibition of these toxins could reduce venom toxicity and provide new treatment options for jellyfish envenomation. This study utilized pharma informatic to evaluate Nemopilema nomurai jellyfish-derived peptides against Nemopilema nomurai venom toxins (metalloproteinase and phospholipase). After profiling absorption, distribution, metabolism, excretion, and toxicity (ADMET) parameters, two peptides, DN26779_N and DN26779_Q, were selected for docking analysis. DN26779_N exhibited higher binding energy to metalloproteinase (-13.3), and phospholipase (-12.6) than DN26779_Q. Molecular dynamics simulations confirmed the stability of these interactions, driven by hydrophobic affinity and hydrogen bonding. Overall, DN26779_N and DN26779_Q demonstrate significant potential as inhibitors of metalloproteinase, and phospholipase A2, presenting promising therapeutic avenues for treating and addressing jellyfish envenomation.
Collapse
Affiliation(s)
- Blessing Danso
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
| | - Yang Fengling
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Xiaoyu Hua
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Jinyu Zhang
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China; School of Life Sciences, Liaoning Normal University, Dalian 116081, China
| | - Jingbo Chen
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Yuan Yao
- Outpatient Department of Chinese People's Liberation Army No.92619 Troops, Shenzhen, China
| | - Marina Pozzolini
- Department of Earth, Environment and Life Sciences, University of Genova, Via Pastore 3, 16132 Genova, Italy
| | - Fei Wang
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Liang Xiao
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China.
| | - Huang Ruixue
- Faculty of Naval Medicine, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Wang J, Wang M, Ravi A, Zaraei SO, Alkubaisi BO, Wen Y, Zeng L, El-Gamal MI, Xu H. Inhibition of Glucosinolate Sulfatases to Combat Plutella xylostella: Development of Novel Phenylcarboxamide Derivatives for Plant-Integrated Pest Management. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:12061-12071. [PMID: 40310993 DOI: 10.1021/acs.jafc.5c01873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Glucosinolates in cruciferous plants are hydrolyzed by myrosinase to produce toxic isothiocyanates (ITCs). However, Plutella xylostella (P. xylostella), one of the top 10 global agricultural pests, utilizes glucosinolate sulfatases (GSSs) in its gut to convert glucosinolates into nontoxic desulfo-glucosinolates, thereby effectively avoiding the toxicity of ITCs. This study investigates the potential of inhibiting GSSs. Among 16 synthesized phenylcarboxamide derivatives, compound 1n exhibited strong inhibitory activity against GSS1 (59.72%) and GSS2 (88.47%), key enzymes involved in glucosinolate desulfation in P. xylostella, leading to toxic ITC accumulation and disrupted detoxification. This resulted in an approximately 30% reduction in larval weight, at a concentration of 100 mg/L, the mortality rate reached 96%. Importantly, in the absence of glucosinolates, these inhibitors showed no direct toxicity to the insect, indicating that their action relies on interaction with the plant's chemical defense system. These findings provide strong evidence supporting the development of GSSs inhibitions as more specific and selective insecticide, offering a promising alternative to conventional chemical pesticides.
Collapse
Affiliation(s)
- Jiali Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Norther Region, Shaoguan University, Shaoguan 512005, China
| | - Manwen Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Anil Ravi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Seyed-Omar Zaraei
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Bilal O Alkubaisi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Yingjie Wen
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs; Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Lingda Zeng
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Hanhong Xu
- State Key Laboratory of Green Pesticide, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
3
|
He ZC, Zhang T, Peng W, Ding F. Protonation State Insights into the Influence of Biocatalytic Function for Acetylcholinesterase Mediated by Neonicotinoids. Biochemistry 2025; 64:1996-2009. [PMID: 40252023 DOI: 10.1021/acs.biochem.5c00024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
The catalytic efficiency of acetylcholinesterase (AChE) is likely regulated by the protonation states and conformational adaptations of its catalytic residues. While neonicotinoid insecticides are recognized for impairing AChE function through neurotoxic mechanisms, the precise molecular mechanisms governing this inhibition remain poorly characterized. This investigation elucidates how structural variations among neonicotinoids modulate the protonation equilibria of Glu-202 and His-447 in AChE's catalytic triad. Comparative analysis reveals that nitro-substituted neonicotinoids (imidacloprid, clothianidin) induce more pronounced protonation state transitions compared to their cyano-containing counterparts (thiacloprid, acetamiprid). Specifically, the strong electron-withdrawing nitro groups facilitate the conversion of Glu-202 from the deprotonation (GLU) to protonation (GLH) state and His-447 from the δ- (HID) to ε-position protonation (HIE) state through enhanced electrostatic interactions. These electronic perturbations trigger structural reorganization within the active site, evidenced by nitro group-directed residue realignment and subsequent H-bond formation. Energy decomposition analysis identifies electrostatic contributions as the primary determinant of binding affinity differences, with nitro-neonicotinoids exhibiting stronger interactions than cyano-neonicotinoids. QM/MM metadynamics reveals that substantial protonation state alterations disrupt AChE's biocatalytic function, particularly its capacity for acetylcholine hydrolysis. Finally, SH-SY5Y-based cellular assays show that imidacloprid exhibits the strongest inhibitory effect on AChE intracellular activity, while thiacloprid and acetamiprid show weaker inhibitory effects, aligning with the computational predictions. This study provides insights into the protonation-state-induced biocatalytic function for acetylcholinesterase mediated by neonicotinoids, contributing to the assessment of exogenous ligand-induced potential ecological and human health risks.
Collapse
Affiliation(s)
- Zhi-Cong He
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tao Zhang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Wei Peng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Fei Ding
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| |
Collapse
|
4
|
Alruwaili M, Alhassan HH, Almutary H, Tahir Ul Qamar M. Computational identification of aspartic protease inhibitors for antimalarial drug development against Plasmodium Vivax. Sci Rep 2025; 15:14824. [PMID: 40295646 PMCID: PMC12037717 DOI: 10.1038/s41598-025-98516-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Malaria is a parasitic disease that has caused suffering to humans since ancient times and remains a major public health concern in tropical and subtropical regions.The development of novel antimalarials therefore becomes of utmost importance by targeting aspartic protease. The computational study utilized a molecular docking approach to identify hit compounds. In this stuyda molecular docking approach was employed to identify potential hit compounds. The molecular docking analysis yielded three hit compounds CMNPD229, ZINC000000018635, and ZINC000005425464 along with the reference drug chloroquine, with binding energy scores of -8.1 kcal/mol, -8.0 kcal/mol, -7.8 kcal/mol, and - 6.8 kcal/mol, respectively. These compounds were further to assess their potential as optimal drug candidates. Subsequently density function theory (DFT) was performed. Afterward, the protein-ligand (PL) complexes were subjected to molecular dynamic simulation (MDS) to identify the stability and rigidity of the complexes in a fleeting and dynamic setting. The complex CMNPD229 exhibited good stability followed by ZINC000000018635, ZINC000005425464, and the Control. The compounds showed good MM-PBSA/GBSA, WaterSwap, and entropy energy values. The calculated MM-PBSA/GBSA binding free energy scores were - 120.78 kcal/mol, -107.16 kcal/mol, -91.00 kcal/mol, and - 97.49 kcal/mol for CMNPD229, ZINC000000018635, ZINC000005425464, and the reference drug, respectively.Additionally, salt bridge analysis and secondary structure evaluation revealed that CMNPD229 formed the highest number of interactions (Glu290-Arg23 and Glu305-Lys306), indicating its stability as a potential drug candidate. This study suggests that CMNPD229 holds promise as a potent antimalarial drug by effectively inhibiting Plasmodium falciparum and Plasmodium vivax aspartic proteases.
Collapse
Affiliation(s)
- Muharib Alruwaili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf, 72388, Saudi Arabia
| | - Hassan H Alhassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Al-Jouf, 72388, Saudi Arabia
| | - Hayfa Almutary
- Medical Surgical Nursing Department, Faculty of Nursing, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Tahir Ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad (GCUF), Faisalabad, 38000, Pakistan.
| |
Collapse
|
5
|
Simone M. Borylated 5-Membered Ring Iminosugars: Detailed Nuclear Magnetic Resonance Spectroscopic Characterisation, and Method for Analysis of Anomeric and Boron Equilibria. Molecules 2025; 30:1402. [PMID: 40285852 PMCID: PMC11990579 DOI: 10.3390/molecules30071402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 04/29/2025] Open
Abstract
This paper describes the first detailed NMR analysis of the borylated intermediates and target compounds for a small library of pyrrolidine iminosugars of l-gulose absolute stereochemical configuration. The iminosugars were functionalised via N-alkylation to bear a boronate ester or boronic acid groups. The addition of the organic boron pharmacophore allows to further explore the chemical space around and in the active sites, where the boron atom has the capability to make reversible covalent bonds with enzyme nucleophiles and other nucleophiles. We discuss the concurrent complex equilibrium processes of mutarotation and borarotation as studied by NMR.
Collapse
Affiliation(s)
- Michela Simone
- Discipline of Chemistry, University of Newcastle, Callaghan, NSW 2308, Australia;
- Newcastle CSIRO Energy Centre, 10 Murray Dwyer Circuit, Mayfield West, NSW 2304, Australia
| |
Collapse
|
6
|
Wang M, Song Y, Hu M, Wei J, Li X. Computer-assisted enzyme cocktails enhance fermentation by overcoming toxic inhibitors from pretreatment processes. BIORESOURCE TECHNOLOGY 2025; 419:132076. [PMID: 39828043 DOI: 10.1016/j.biortech.2025.132076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Lignocellulosic biomass is the most abundant form of biomass available for fuel production, serving as the fourth leading energy source globally. However, inhibitors generated during pretreatment processes often hinder fermentation performance and conversion efficiency. In this study, we developed an enhanced computer-assisted enzyme cocktail strategy (ComEC 2.0) to mitigate the inhibitory effects. Through experimental studies and molecular dynamics simulations, eight optimization strategies were developed for enzyme cocktail formulation (comprising CBHI, EG, BG, XYN, LPMO). Notably, Strategy 4b, which accounts for both overall hydration and the synergistic effects between LPMO and CBHI/EG/BG/XYN, increased glucose and xylose yields by 20.7 % and 21 %, respectively, using corn stover, reducing Process Mass Intensity (PMI) by 70.78 % and water use by 80 % during ethanol fermentation. Applying Strategy 4b to industrial corn cob increased glucose and xylose yields by 22.1 % and 21.6 %, surpassing the commercial Ctec3 blend. This scalable approach significantly enhances biomass conversion and resource efficiency, offering broad industrial potential.
Collapse
Affiliation(s)
- Minghui Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Yibo Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Meng Hu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Junnan Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China
| | - Xiujuan Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 2 Xuelin Road, Nanjing 210097, China.
| |
Collapse
|
7
|
Pacheco AFC, Pacheco FC, Nalon GA, Cunha JS, Andressa I, Costa Paiva PH, Tribst AAL, Leite Júnior BRDC. Impact of ultrasonic pretreatment on pumpkin seed protein: Effect on protease activities, protein structure, hydrolysis kinetics and functional properties. Food Res Int 2025; 201:115538. [PMID: 39849696 DOI: 10.1016/j.foodres.2024.115538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/11/2024] [Accepted: 12/28/2024] [Indexed: 01/30/2025]
Abstract
Adding value to food by-products, such as pumpkin seeds, is an important strategy for the complete utilization of plant foods and advancing sustainability goals. This study aimed to maximize the production of bioactive peptides from pumpkin seed protein (PSP) by combining ultrasonic (US) pretreatment (40 kHz, 23.8 W/L) with enzymatic hydrolysis. The PSP's structure after sonication and its effects on the commercial proteases (Brauzyn®, Flavourzyme®, Neutrase®) activity and degree of hydrolysis were studied. The hydrolysis consequences regarding solubility and antioxidant activity of the resulting peptides were also evaluated. Sonication of PSP increased enzymatic activity by up to 21.3 % for Brauzyn®, 24.8 % for Flavourzyme® and 19.2 % for Neutrase®. Consequently, there was an increase in the degree of hydrolysis (up to 89 %) using sonicated PSP, particularly at 60 min/40 °C. These effects can be attributed to ultrasound-induced protein conformation changes, including increased intrinsic fluorescence intensity (<22 %), shifts in UV spectra, and alterations in FTIR amide bands, especially a decrease in β-sheet content (<7.14 %). Additionally, ultrasonic pretreatment reduced particle size (<43.9 %) and polydispersity index (<58 %), enhancing enzyme accessibility by fragmenting protein aggregates, as observed via scanning electron microscopy. As a result, the peptides obtained from the hydrolysis of sonicated PSP exhibited higher protein solubility (12 % to 49 % at pH 6.0) and improved antioxidant activity (5.6 % to 77 %). Overall, sonication of PSP for 60 min at 40 °C followed by hydrolysis with Neutrase® proved to be the most effective strategy for producing highly soluble peptides with enhanced antioxidant properties, highlighting the potential of ultrasound as a valuable tool for optimizing bioactive peptide production. Based on these results, the developed process is ready for scale-up by the food industry, aiming to obtain protein hydrolysates with improved functional and/or nutritional properties from a low-cost raw material. In parallel, further researches can focus on the potential application of these hydrolysates as ingredients in bakery, meet or dairy products.
Collapse
Affiliation(s)
- Ana Flávia Coelho Pacheco
- Department of Food Technology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, University Campus, 36570-900, Viçosa, MG, Brazil; Cândido Tostes Dairy Institute, Agricultural Company of Minas Gerais (EPAMIG), Tenente Luiz de Freitas, 116, Juiz de Fora, MG 36045-560, Brazil.
| | - Flaviana Coelho Pacheco
- Department of Food Technology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, University Campus, 36570-900, Viçosa, MG, Brazil
| | - Gabriela Aparecida Nalon
- Department of Food Technology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, University Campus, 36570-900, Viçosa, MG, Brazil
| | - Jeferson Silva Cunha
- Department of Food Technology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, University Campus, 36570-900, Viçosa, MG, Brazil
| | - Irene Andressa
- Department of Food Technology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, University Campus, 36570-900, Viçosa, MG, Brazil
| | - Paulo Henrique Costa Paiva
- Cândido Tostes Dairy Institute, Agricultural Company of Minas Gerais (EPAMIG), Tenente Luiz de Freitas, 116, Juiz de Fora, MG 36045-560, Brazil
| | - Alline Artigiani Lima Tribst
- Center for Food Studies and Research (NEPA), University of Campinas (UNICAMP), Albert Einstein, 291, 13083-852, Campinas, SP Brazil
| | | |
Collapse
|
8
|
Narayanan A, Jeyaram K, Prabhu AA, Krishnan S, Kunjiappan S, Baskaran N, Murugan D. Cellulase from Halomonas elongata for biofuel application: enzymatic characterization and inhibition tolerance investigation. Prep Biochem Biotechnol 2025:1-18. [PMID: 39838840 DOI: 10.1080/10826068.2025.2453727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Halophilic bacteria are promising candidates for biofuel production because of their efficient cellulose degradation. Their cellulases exhibit high activity, even in the presence of inhibitors and under extreme conditions, making them ideal for biorefinery applications. In this study, we isolated a strain of Halomonas elongata (Kadal6) from decomposed cotton cloth on a Rameshwaram seashore. Morphological, biochemical, and 16S rRNA analyses revealed that Kadal6 was 99.93% similar to the cellulase-producing strain, H. elongata MH25661. The tolerance of the cellulase to inhibitors was assessed through molecular docking with a cellulase model of MH25661 generated by I-TASSER and experimentally using response surface methodology (RSM) with Kadal6. A molecular docking study indicated a high inhibition constant for ethanol, hydroxymethylfurfural (HMF), and furfural. Cellulase from H. elongata Kadal6 (CellHe) showed a maximum inhibition rate of 44.27% at 55 °C, 15% ethanol, and 6.5 g/L furfural and HMF. The enzyme retained 50% of its activity in the presence of these inhibitors, and remained unaffected at 1 g/L furfural and HMF, although inhibition occurred at 3 g/L. H. elongata cellulase demonstrated significant tolerance to inhibition both in vitro (RSM) and in silico, indicating its potential for biorefinery applications in harsh environments.
Collapse
Affiliation(s)
- Aathimoolam Narayanan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankovil, Tamil Nadu, India
| | - Kanimozhi Jeyaram
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankovil, Tamil Nadu, India
| | - Ashish A Prabhu
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India
| | - Sundar Krishnan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankovil, Tamil Nadu, India
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankovil, Tamil Nadu, India
| | - Nareshkumar Baskaran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Dharanidharan Murugan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankovil, Tamil Nadu, India
| |
Collapse
|
9
|
Vats R, Yadav P, Bano A, Wadhwa S, Narwal A, Bhardwaj R. Salivary cysteine levels as a potential biochemical indicator of oral cancer risk in tobacco consumers. Biomark Med 2024; 18:877-888. [PMID: 39344869 PMCID: PMC11508954 DOI: 10.1080/17520363.2024.2403327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Aim: Oral cancer is the leading cause of mortality, with a survival rate of less than 5 years, and is predominantly influenced by tobacco mutagens. Invasive diagnostic methods hinder early detection of oral cancer biomarkers. The present study performed salivary biochemical analysis for early oral cancer screening in tobacco consumers.Materials & methods: Three study groups included healthy controls (n = 25), tobacco users (n = 25) and oral cancer patients (n = 25). Salivary total protein, amylase, TNF-α and amino acid levels were evaluated using enzymatic tests, Enzyme linked Immunosorbent Assay (ELISA) and High-Performance Liquid Chromatography (HPLC).Results: Compared with healthy controls, salivary total protein and TNF-α levels were significantly (p = 0.04) higher in oral cancer patients. Salivary amylase levels were significantly lower in tobacco smokers (p = 0.02) and higher in oral cancer patients (p = 0.01). Interestingly, the amino acid cysteine concentration was significantly higher (p = 0.02) in tobacco consumers (62.5 ± 10) than in healthy controls (116.1 ± 28).Conclusion: In high-risk populations, such as tobacco users, salivary biochemical analysis can serve as a promising noninvasive diagnostic method for early oral cancer screening. As a salivary biomarker, the amino acid cysteine exhibits potential as a means of detecting the progression of oral cancer in individuals who consume tobacco.
Collapse
Affiliation(s)
- Ravina Vats
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India
| | - Pooja Yadav
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India
| | - Afsareen Bano
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India
| | - Sapna Wadhwa
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India
| | - Anjali Narwal
- Dept. of Oral Pathology, Postgraduate Institute of Dental Sciences, Rohtak, Haryana, 124001, India
| | - Rashmi Bhardwaj
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, 122001, India
| |
Collapse
|
10
|
Cunha JS, Pacheco FC, Martins CCN, Pacheco AFC, Tribst AAL, Leite Júnior BRDC. Use of ultrasound to improve the activity of cyclodextrin glycosyltransferase in the producing of β-cyclodextrins: Impact on enzyme activity, stability and insights into changes on enzyme macrostructure. Food Res Int 2024; 191:114662. [PMID: 39059935 DOI: 10.1016/j.foodres.2024.114662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
This work explored the impact of ultrasound (US) on the activity, stability, and macrostructural conformation of cyclodextrin glycosyltransferase (CGTase) and how these changes could maximize the production of β-cyclodextrins (β-CDs). The results showed that ultrasonic pretreatment (20 kHz and 38 W/L) at pH 6.0 promoted increased enzymatic activity. Specifically, after sonication at 25 °C/30 min, there was a maximum activity increase of 93 % and 68 % when biocatalysis was carried out at 25 and 55 °C, respectively. For activity measured at 80 °C, maximum increase (31 %) was observed after sonication at 25 °C/60 min. Comparatively, US pretreatment at low pH (pH = 4.0) resulted in a lower activity increase (max. 28 %). These activation levels were maintained after 24 h of storage at 8 °C, suggesting that changes on CGTase after ultrasonic pretreatment were not transitory. These pretreatments altered the conformational structure of CGTase, revealed by an up to 11 % increase in intrinsic fluorescence intensity, and resulted in macrostructural modifications, such as a decrease in particle size and polydispersion index (up to 85 % and 45.8 %, respectively). Therefore, the sonication of CGTase under specific conditions of pH, time, and temperature (especially at pH 6.0/ 30 min/ 25 °C) promotes macrostructural changes in CGTase that induce enzyme activation and, consequently, higher production of β-CDs.
Collapse
Affiliation(s)
- Jeferson Silva Cunha
- Department of Food Technology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, University Campus, 36570-900 Viçosa, MG, Brazil
| | - Flaviana Coelho Pacheco
- Department of Food Technology, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, University Campus, 36570-900 Viçosa, MG, Brazil
| | - Caio Cesar Nemer Martins
- Department of Forest Science, Federal University of Viçosa, Av. Peter Henry Rolfs, S/n, University Campus, 36570-900 Viçosa, MG, Brazil
| | - Ana Flávia Coelho Pacheco
- Cândido Tostes Dairy Institute, Agricultural Company of Minas Gerais (EPAMIG), 11 Lieutenant Luiz de Freitas, 116, 36045-560 Juiz de Fora, MG, Brazil
| | - Alline Artigiani Lima Tribst
- Núcleo de Estudos e Pesquisas em Alimentação (NEPA), Coordenadoria de Centros e Núcleos Interdisciplinares de Pesquisa (COCEN), Universidade Estadual de Campinas (UNICAMP), Albert Einstein, 291, 13083-852 Campinas, SP, Brazil
| | | |
Collapse
|
11
|
Kusumawardani S, Luangsakul N. Assessment of polyphenols in purple and red rice bran: Phenolic profiles, antioxidant activities, and mechanism of inhibition against amylolytic enzymes. Curr Res Food Sci 2024; 9:100828. [PMID: 39286431 PMCID: PMC11403441 DOI: 10.1016/j.crfs.2024.100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Pigmented Thai rice varieties, including purple (Riceberry) and red (Hommali), are gaining popularity due to their health benefits as a source of polyphenols that may exert a hypoglycemic effect through specific inhibition of amylolytic enzymes. This study determined the free phenolic extract from purple rice bran (PFE) to exhibit notably greater content of phytochemical compounds than did phenolic extracts from red rice bran, whether free (RFE) or bound fractions. This phytochemical content correlated with increased antioxidant activity and strong inhibition capacity against amylolytic enzymes, suppressing the conversion of carbohydrates into glucose. Several polyphenol compounds were identified in pigmented rice bran extracts, including benzoic acid, chlorogenic acid, ferulic acid, apigenin, and rutin; among these, flavonoids exhibited greater effect on inhibition capacity. Mechanistically, PFE was found to act as a competitive and uncompetitive inhibitor of α-amylase and α-glucosidase respectively, while RFE showed respective uncompetitive and competitive inhibitory modes.
Collapse
Affiliation(s)
- Sandra Kusumawardani
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Naphatrapi Luangsakul
- School of Food Industry, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| |
Collapse
|
12
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
13
|
Purnawita W, Rahayu WP, Lioe HN, Nurjanah S, Wahyudi ST. Potential molecular mechanism of reuterin on the inhibition of Aspergillus flavus conidial germination: An in silico study. J Food Sci 2024; 89:1167-1186. [PMID: 38193164 DOI: 10.1111/1750-3841.16904] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 01/10/2024]
Abstract
Reuterin is a natural antifungal agent derived from certain strains of Limosilactobacillus reuteri. Our previous study revealed that 6 mM reuterin inhibited completely the conidial germination of aflatoxigenic Aspergillus flavus. This study investigated the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination, which was pre-assumed that it correlated to the inhibition of some essential enzyme activity involved in conidial germination, specifically 1,3-β-glucan synthase, chitin synthase, and catalases (catalase, bifunctional catalase-peroxidase, and spore-specific catalase). The complex of 1,3-β-glucan synthase and chitin synthase with reuterin had a lower binding affinity than that with the substrate. Conversely, the complex of catalases with reuterin had a higher binding affinity than that with the substrate. It was suggested that 1,3-β-glucan synthase and chitin synthase tended to bind the substrate rather than bind reuterin. In contrast, catalases tended to bind reuterin rather than bind the substrate. Therefore, reuterin could be a potential inhibitor of catalases but may not be an inhibitor of 1,3-β-glucan synthase and chitin synthase. In this in silico study, we predicted that the potential molecular mechanism of reuterin in inhibiting A. flavus conidial germination was due to the inhibition of catalases activities by competitively binding to the enzymes active sites, thus resulting in the accumulation of reactive oxygen species in cells, leading to cells damage. PRACTICAL APPLICATION: This in silico study revealed that reuterin is a potential inhibitor of catalases in A. flavus, thereby interfering with the antioxidant system during conidial germination. This finding shows that reuterin can be used as an antifungal agent in food or agricultural products, inhibiting conidial germination completely.
Collapse
Affiliation(s)
- Widiati Purnawita
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Winiati Pudji Rahayu
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Hanifah Nuryani Lioe
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Siti Nurjanah
- Department of Food Science and Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Setyanto Tri Wahyudi
- Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
- Tropical Biopharmaca Research Center, IPB University (Bogor Agricultural University), Bogor, Indonesia
| |
Collapse
|
14
|
Zhu C, Wei F, Jiang H, Lin Z, Zhong L, Wu Y, Sun X, Song L. Exploration of the structural mechanism of hydrogen (H 2)-promoted horseradish peroxidase (HRP) activity via multiple spectroscopic and molecular dynamics simulation techniques. Int J Biol Macromol 2024; 258:128901. [PMID: 38128803 DOI: 10.1016/j.ijbiomac.2023.128901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Horseradish peroxidase (HRP) is an enzyme that is widely used in various fields. In this study, the effects of molecular hydrogen (H2) on the activity and structural characteristics of HRP were investigated by employing multiple spectroscopic techniques, atomic force microscopy (AFM) and molecular dynamics (MD) simulations. The results demonstrated that H2 could enhance HRP activity, especially in 1.5 mg/L hydrogen-rich water (HRW). The structural analysis results showed that H2 might alter HRP activity by affecting the active sites, secondary structure, hydrogen bonding network, CS groups, and morphological characteristics. The MD results also confirmed that H2 could increase the FeN bond distance in the active site, affect the secondary structure, and increase the number of hydrogen bonds. The MD results further suggested that H2 could increase the number of salt bridges, and lengthen the SS bonds in HRP. This study primarily revealed the mechanism by which H2 enhances the HRP activity, providing insight into the interactions between gas and macromolecular proteins. However, some of the results obtained via MD simulations still need to be verified experimentally. In addition, our study also provided a new convenient strategy to enhance enzyme activity.
Collapse
Affiliation(s)
- Chuang Zhu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fenfen Wei
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huibin Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihan Lin
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lingyue Zhong
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangjun Sun
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lihua Song
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
15
|
Ge F, Chen G, Qian M, Xu C, Liu J, Cao J, Li X, Hu D, Xu Y, Xin Y, Wang D, Zhou J, Shi H, Tan Z. Artificial Intelligence Aided Lipase Production and Engineering for Enzymatic Performance Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14911-14930. [PMID: 37800676 DOI: 10.1021/acs.jafc.3c05029] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
With the development of artificial intelligence (AI), tailoring methods for enzyme engineering have been widely expanded. Additional protocols based on optimized network models have been used to predict and optimize lipase production as well as properties, namely, catalytic activity, stability, and substrate specificity. Here, different network models and algorithms for the prediction and reforming of lipase, focusing on its modification methods and cases based on AI, are reviewed in terms of both their advantages and disadvantages. Different neural networks coupled with various algorithms are usually applied to predict the maximum yield of lipase by optimizing the external cultivations for lipase production, while one part is used to predict the molecule variations affecting the properties of lipase. However, few studies have directly utilized AI to engineer lipase by affecting the structure of the enzyme, and a set of research gaps needs to be explored. Additionally, future perspectives of AI application in enzymes, including lipase engineering, are deduced to help the redesign of enzymes and the reform of new functional biocatalysts. This review provides a new horizon for developing effective and innovative AI tools for lipase production and engineering and facilitating lipase applications in the food industry and biomass conversion.
Collapse
Affiliation(s)
- Feiyin Ge
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Gang Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Minjing Qian
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Cheng Xu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Jiao Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Jiaqi Cao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Xinchao Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Die Hu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yangsen Xu
- Dongtai Hanfangyuan Biotechnology Co. Ltd., Yancheng 224241, People's Republic of China
| | - Ya Xin
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Dianlong Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Jia Zhou
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Hao Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| | - Zhongbiao Tan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, People's Republic of China
| |
Collapse
|