1
|
García-Trejo SS, Gómez-Sierra T, Eugenio-Pérez D, Medina-Campos ON, Pedraza-Chaverri J. Protective Effect of Curcumin on D-Galactose-Induced Senescence and Oxidative Stress in LLC-PK1 and HK-2 Cells. Antioxidants (Basel) 2024; 13:415. [PMID: 38671863 PMCID: PMC11047423 DOI: 10.3390/antiox13040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
D-galactose has been widely used as an inducer of cellular senescence and pathophysiological processes related to aging because it induces oxidative stress. On the other hand, the consumption of antioxidants such as curcumin can be an effective strategy to prevent phenotypes related to the enhanced production of reactive oxygen species (ROS), such as aging and senescence. This study aimed to evaluate the potential protective effect of curcumin on senescence and oxidative stress and endoplasmic reticulum stress induced by D-galactose treatment in Lilly Laboratories Culture-Porcine Kidney 1 (LLC-PK1) and human kidney 2 (HK-2) proximal tubule cell lines from pig and human, respectively. For senescence induction, cells were treated with 300 mM D-galactose for 120 h and, to evaluate the protective effect of the antioxidant, cells were treated with 5 µM curcumin for 24 h and subsequently treated with curcumin + D-galactose for 120 h. In LLC-PK1 cells, curcumin treatment decreased by 20% the number of cells positive for senescence-associated (SA)-β-D-galactosidase staining and by 25% the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and increased by 40% lamin B1 expression. In HK-2 cells, curcumin treatment increased by 60% the expression of proliferating cell nuclear antigen (PCNA, 50% Klotho levels, and 175% catalase activity. In both cell lines, this antioxidant decreased the production of ROS (20% decrease for LLC-PK1 and 10 to 20% for HK-2). These data suggest that curcumin treatment has a moderate protective effect on D-galactose-induced senescence in LLC-PK1 and HK-2 cells.
Collapse
Affiliation(s)
| | | | | | | | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico; (S.S.G.-T.); (T.G.-S.); (D.E.-P.); (O.N.M.-C.)
| |
Collapse
|
2
|
Bondy SC. Mitochondrial Dysfunction as the Major Basis of Brain Aging. Biomolecules 2024; 14:402. [PMID: 38672420 PMCID: PMC11048299 DOI: 10.3390/biom14040402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
The changes in the properties of three biological events that occur with cerebral aging are discussed. These adverse changes already begin to develop early in mid-life and gradually become more pronounced with senescence. Essentially, they are reflections of the progressive decline in effectiveness of key processes, resulting in the deviation of essential biochemical trajectories to ineffective and ultimately harmful variants of these programs. The emphasis of this review is the major role played by the mitochondria in the transition of these three important processes toward more deleterious variants as brain aging proceeds. The immune system: the shift away from an efficient immune response to a more unfocused, continuing inflammatory condition. Such a state is both ineffective and harmful. Reactive oxygen species are important intracellular signaling systems. Additionally, microglial phagocytic activity utilizing short lived reactive oxygen species contribute to the removal of aberrant or dead cells and bacteria. These processes are transformed into an excessive, untargeted, and persistent generation of pro-oxidant free radicals (oxidative stress). The normal efficient neural transmission is modified to a state of undirected, chronic low-level excitatory activity. Each of these changes is characterized by the occurrence of continuous activity that is inefficient and diffused. The signal/noise ratio of several critical biological events is thus reduced as beneficial responses are gradually replaced by their impaired and deleterious variants.
Collapse
Affiliation(s)
- Stephen C. Bondy
- Department of Environmental & Occupational Health, University of California, Irvine, CA 92697, USA;
- Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
3
|
Homolak J, Varvaras K, Sciacca V, Babic Perhoc A, Virag D, Knezovic A, Osmanovic Barilar J, Salkovic-Petrisic M. Insights into Gastrointestinal Redox Dysregulation in a Rat Model of Alzheimer's Disease and the Assessment of the Protective Potential of D-Galactose. ACS OMEGA 2024; 9:11288-11304. [PMID: 38496956 PMCID: PMC10938400 DOI: 10.1021/acsomega.3c07152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/14/2023] [Accepted: 01/04/2024] [Indexed: 03/19/2024]
Abstract
Recent evidence suggests that the gut plays a vital role in the development and progression of Alzheimer's disease (AD) by triggering systemic inflammation and oxidative stress. The well-established rat model of AD, induced by intracerebroventricular administration of streptozotocin (STZ-icv), provides valuable insights into the GI implications of neurodegeneration. Notably, this model leads to pathophysiological changes in the gut, including redox dyshomeostasis, resulting from central neuropathology. Our study aimed to investigate the mechanisms underlying gut redox dyshomeostasis and assess the effects of D-galactose, which is known to benefit gut redox homeostasis and alleviate cognitive deficits in this model. Duodenal rings isolated from STZ-icv animals and control groups were subjected to a prooxidative environment using 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) or H2O2 with or without D-galactose in oxygenated Krebs buffer ex vivo. Redox homeostasis was analyzed through protein microarrays and functional biochemical assays alongside cell survival assessment. Structural equation modeling and univariate and multivariate models were employed to evaluate the differential response of STZ-icv and control samples to the controlled prooxidative challenge. STZ-icv samples showed suppressed expression of catalase and glutathione peroxidase 4 (GPX4) and increased baseline activity of enzymes involved in H2O2 and superoxide homeostasis. The altered redox homeostasis status was associated with an inability to respond to oxidative challenges and D-galactose. Conversely, the presence of D-galactose increased the antioxidant capacity, enhanced catalase and peroxidase activity, and upregulated superoxide dismutases in the control samples. STZ-icv-induced gut dysfunction is characterized by a diminished ability of the redox regulatory system to maintain long-term protection through the transcription of antioxidant response genes as well as compromised activation of enzymes responsible for immediate antioxidant defense. D-galactose can exert beneficial effects on gut redox homeostasis under physiological conditions.
Collapse
Affiliation(s)
- Jan Homolak
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Interfaculty
Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, 72074 Tübingen, Germany
| | - Konstantinos Varvaras
- Department
of Medicine, School of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vittorio Sciacca
- Faculty
of Medicine, University of Catania, 95131 Catania, Italy
| | - Ana Babic Perhoc
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Davor Virag
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Ana Knezovic
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Jelena Osmanovic Barilar
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Melita Salkovic-Petrisic
- Department
of Pharmacology & Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Homolak J, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Virag D, Salkovic-Petrisic M. Exploratory Study of Gastrointestinal Redox Biomarkers in the Presymptomatic and Symptomatic Tg2576 Mouse Model of Familial Alzheimer's Disease: Phenotypic Correlates and Effects of Chronic Oral d-Galactose. ACS Chem Neurosci 2023; 14:4013-4025. [PMID: 37932005 PMCID: PMC10655039 DOI: 10.1021/acschemneuro.3c00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
The gut might play an important role in the etiopathogenesis of Alzheimer's disease (AD) as gastrointestinal alterations often precede the development of neuropathological changes in the brain and correlate with disease progression in animal models. The gut has an immense capacity to generate free radicals whose role in the etiopathogenesis of AD is well-known; however, it remains to be clarified whether gastrointestinal redox homeostasis is associated with the development of AD. The aim was to (i) examine gastrointestinal redox homeostasis in the presymptomatic and symptomatic Tg2576 mouse model of AD; (ii) investigate the effects of oral d-galactose previously shown to alleviate cognitive deficits and metabolic changes in animal models of AD and reduce gastrointestinal oxidative stress; and (iii) investigate the association between gastrointestinal redox biomarkers and behavioral alterations in Tg2576 mice. In the presymptomatic stage, Tg2576 mice displayed an increased gastrointestinal electrophilic tone, characterized by higher lipid peroxidation and elevated Mn/Fe-SOD activity. In the symptomatic stage, these alterations are rectified, but the total antioxidant capacity is decreased. Chronic oral d-galactose increased the antioxidant capacity and reduced lipid peroxidation in the Tg2576 but had the opposite effects in the wild-type animals. The total antioxidant capacity of the gastrointestinal tract was associated with greater spatial memory. Gut redox homeostasis might be involved in the development and progression of AD pathophysiology and should be further explored in this context.
Collapse
Affiliation(s)
- Jan Homolak
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Interfaculty
Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”, University of Tübingen, Tübingen 72076, Germany
| | - Ana Babic Perhoc
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Ana Knezovic
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Jelena Osmanovic Barilar
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Davor Virag
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Melita Salkovic-Petrisic
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| |
Collapse
|