1
|
Raymond JS, Athanasopoulos AG, Badolato CJ, Doolan TJ, Scicluna RL, Everett NA, Bowen MT, James MH. Emerging medications and pharmacological treatment approaches for substance use disorders. Pharmacol Biochem Behav 2025; 248:173952. [PMID: 39719161 DOI: 10.1016/j.pbb.2024.173952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Medications to treat substance use disorders (SUDs) remain suboptimal or, in the case of stimulants and cannabis, non-existent. Many factors have contributed to this paucity, including the biological complexity of addiction, regulatory challenges, and a historical lack of enthusiasm among pharmaceutical companies to commit resources to this disease space. Despite these headwinds, the recent opioid crisis has highlighted the devastating consequences of SUDs for both individuals and society, stimulating urgent efforts to identify novel treatment approaches. In addition, several neurobiological systems have been recently implicated in unique aspects of drug reward, opening the door to candidate medications with novel mechanisms of action. Here, we provide an overview of efforts to target several of these new systems, with a focus on those that are the subject of ongoing clinical trials as well as being areas of interest among the authors' research groups (MHJ, MTB, NAE). Specifically, we discuss new classes of medications targeting the serotonin 2A receptor (i.e., psychedelics), glucagon-like peptide 1 receptor, cannabidiol, dynorphin/kappa opioid receptor, orexin/hypocretin, and oxytocin receptor systems, as well as emergent approaches for modulating the more canonical dopaminergic system via agonist therapies for stimulant use disorders. Collectively, innovations in this space give reason for optimism for an improved therapeutic landscape for substance use disorders in the near future.
Collapse
Affiliation(s)
- Joel S Raymond
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Rutgers Addiction Research Center, Brain Health Institute, Rutgers Health, Piscataway, NJ, USA
| | - Alexander G Athanasopoulos
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Connie J Badolato
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Tylah J Doolan
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Rhianne L Scicluna
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas A Everett
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Michael T Bowen
- School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Morgan H James
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA; Rutgers Addiction Research Center, Brain Health Institute, Rutgers Health, Piscataway, NJ, USA; School of Psychology, Faculty of Science, University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Sikiric P, Sever M, Krezic I, Vranes H, Kalogjera L, Smoday IM, Vukovic V, Oroz K, Coric L, Skoro M, Kavelj I, Zubcic S, Sikiric S, Beketic Oreskovic L, Oreskovic I, Blagaic V, Brcic K, Strbe S, Staresinic M, Boban Blagaic A, Skrtic A, Seiwerth S. New studies with stable gastric pentadecapeptide protecting gastrointestinal tract. significance of counteraction of vascular and multiorgan failure of occlusion/occlusion-like syndrome in cytoprotection/organoprotection. Inflammopharmacology 2024; 32:3119-3161. [PMID: 38980576 DOI: 10.1007/s10787-024-01499-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/28/2024] [Indexed: 07/10/2024]
Abstract
Since the early 1990s, when Robert's and Szabo's cytoprotection concept had already been more than one decade old, but still not implemented in therapy, we suggest the stable gastric pentadecapeptide BPC 157 as the most relevant mediator of the cytoprotection concept. Consequently, it can translate stomach and gastrointestinal mucosal maintenance, epithelium, and endothelium cell protection to the therapy of other tissue healing (organoprotection), easily applicable, as native and stable in human gastric juice for more than 24 h. These overwhelm current clinical evidence (i.e., ulcerative colitis, phase II, no side effects, and no lethal dose (LD1) in toxicology studies), as BPC 157 therapy effectively combined various tissue healing and lesions counteraction. BPC 157 cytoprotection relevance and vascular recovery, activation of collateral pathways, membrane stabilizer, eye therapy, wound healing capability, brain-gut and gut-brain functioning, tumor cachexia counteraction, muscle, tendon, ligament, and bone disturbances counteraction, and the heart disturbances, myocardial infarction, heart failure, pulmonary hypertension, arrhythmias, and thrombosis counteraction appeared in the recent reviews. Here, as concept resolution, we review the counteraction of advanced Virchow triad circumstances by activation of the collateral rescuing pathways, depending on injury, activated azygos vein direct blood flow delivery, to counteract occlusion/occlusion-like syndromes starting with the context of alcohol-stomach lesions. Counteraction of major vessel failure (congested inferior caval vein and superior mesenteric vein, collapsed azygos vein, collapsed abdominal aorta) includes counteraction of the brain (intracerebral and intraventricular hemorrhage), heart (congestion, severe arrhythmias), lung (hemorrhage), and congestion and lesions in the liver, kidney, and gastrointestinal tract, intracranial (superior sagittal sinus), portal and caval hypertension, aortal hypotension, and thrombosis, peripherally and centrally.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | - Marko Sever
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Luka Coric
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marija Skoro
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Ivana Kavelj
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Diagnostic and Interventional Radiology, Sestre Milosrdnice University Hospital Center, Zagreb, Croatia
| | - Slavica Zubcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | | | - Ivana Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Vladimir Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Klara Brcic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Surgery, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000, Zagreb, Croatia
| |
Collapse
|
3
|
Strbe S, Smoday IM, Krezic I, Kalogjera L, Vukovic V, Zizek H, Gojkovic S, Vranes H, Barisic I, Sikiric S, Tepes M, Oroz K, Brkic F, Drinkovic M, Beketic Oreskovic L, Popic J, Boban Blagaic A, Skrtic A, Staresinic M, Seiwerth S, Sikiric P. Innate Vascular Failure by Application of Neuroleptics, Amphetamine, and Domperidone Rapidly Induced Severe Occlusion/Occlusion-like Syndromes in Rats and Stable Gastric Pentadecapeptide BPC 157 as Therapy. Pharmaceuticals (Basel) 2023; 16:788. [PMID: 37375736 PMCID: PMC10303627 DOI: 10.3390/ph16060788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Even before behavioral disturbances, neuroleptics, amphetamine, and domperidone application rapidly emerged severe occlusion/occlusion-like syndrome, shared innate vascular and multiorgan failure in rats, comparable to occlusion/occlusion-like syndrome described with vessel(s) occlusion or similar noxious procedures application. As therapy, i.e., activation of the collateral pathways, "bypassing key" (activated azygos vein pathway, direct blood flow delivery), the stable gastric pentadecapeptide BPC 157 is a novel solution. Recently, BPC 157 therapy particularly counteracted neuroleptic- or L-NAME-induced catalepsy, lithium intoxication, and schizophrenia positive and negative symptoms (amphetamine/methamphetamine/apomorphine/ketamine). In rats with complete calvariectomy, medication (BPC 157 10 µg/kg, 10 ng/kg ip or ig) was given 5 min after distinctive dopamine agents (mg/kg ip) (haloperidol (5), fluphenazine (5), clozapine (10), risperidone (5), olanzapine (10), quetiapine (10), or aripiprazole (10), domperidone (25), amphetamine (10), and combined amphetamine and haloperidol) and assessed at 15 min thereafter. All neuroleptic-, domperidone-, and amphetamine-induced comparable vascular and multiorgan failure severe syndrome was alleviated with BPC 157 therapy as before major vessel(s) occlusion or other similar noxious procedures. Specifically, all severe lesions in the brain (i.e., immediate swelling, hemorrhage), heart (i.e., congestion, arrhythmias), and lung (i.e., congestion, hemorrhage), as well as congestion in the liver, kidney, and gastrointestinal (stomach) tract, were resolved. Intracranial (superior sagittal sinus), portal, and caval hypertension and aortal hypotension were attenuated or eliminated. BPC 157 therapy almost annihilated arterial and venous thrombosis, peripherally and centrally. Thus, rapidly acting Virchow triad circumstances that occur as dopamine central/peripheral antagonists and agonist essential class-points, fully reversed by BPC 157 therapy, might be overwhelming for both neuroleptics and amphetamine.
Collapse
Affiliation(s)
- Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Suncana Sikiric
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Marijan Tepes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Filip Brkic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Martin Drinkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Lidija Beketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Jelena Popic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Mario Staresinic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (S.S.)
| | - Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (S.S.); (I.M.S.); (I.K.); (L.K.); (V.V.); (H.Z.); (S.G.); (H.V.); (I.B.); (M.T.); (K.O.); (F.B.); (L.B.O.); (J.P.); (A.B.B.)
| |
Collapse
|
4
|
Sikiric P, Gojkovic S, Krezic I, Smoday IM, Kalogjera L, Zizek H, Oroz K, Vranes H, Vukovic V, Labidi M, Strbe S, Baketic Oreskovic L, Sever M, Tepes M, Knezevic M, Barisic I, Blagaic V, Vlainic J, Dobric I, Staresinic M, Skrtic A, Jurjevic I, Boban Blagaic A, Seiwerth S. Stable Gastric Pentadecapeptide BPC 157 May Recover Brain-Gut Axis and Gut-Brain Axis Function. Pharmaceuticals (Basel) 2023; 16:676. [PMID: 37242459 PMCID: PMC10224484 DOI: 10.3390/ph16050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/12/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Conceptually, a wide beneficial effect, both peripherally and centrally, might have been essential for the harmony of brain-gut and gut-brain axes' function. Seen from the original viewpoint of the gut peptides' significance and brain relation, the favorable stable gastric pentadecapeptide BPC 157 evidence in the brain-gut and gut-brain axes' function might have been presented as a particular interconnected network. These were the behavioral findings (interaction with main systems, anxiolytic, anticonvulsive, antidepressant effect, counteracted catalepsy, and positive and negative schizophrenia symptoms models). Muscle healing and function recovery appeared as the therapeutic effects of BPC 157 on the various muscle disabilities of a multitude of causes, both peripheral and central. Heart failure was counteracted (including arrhythmias and thrombosis), and smooth muscle function recovered. These existed as a multimodal muscle axis impact on muscle function and healing as a function of the brain-gut axis and gut-brain axis as whole. Finally, encephalopathies, acting simultaneously in both the periphery and central nervous system, BPC 157 counteracted stomach and liver lesions and various encephalopathies in NSAIDs and insulin rats. BPC 157 therapy by rapidly activated collateral pathways counteracted the vascular and multiorgan failure concomitant to major vessel occlusion and, similar to noxious procedures, reversed initiated multicausal noxious circuit of the occlusion/occlusion-like syndrome. Severe intracranial (superior sagittal sinus) hypertension, portal and caval hypertensions, and aortal hypotension were attenuated/eliminated. Counteracted were the severe lesions in the brain, lungs, liver, kidney, and gastrointestinal tract. In particular, progressing thrombosis, both peripherally and centrally, and heart arrhythmias and infarction that would consistently occur were fully counteracted and/or almost annihilated. To conclude, we suggest further BPC 157 therapy applications.
Collapse
Affiliation(s)
- Predrag Sikiric
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Slaven Gojkovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Ivan Krezic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Ivan Maria Smoday
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Luka Kalogjera
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Helena Zizek
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Katarina Oroz
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Hrvoje Vranes
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Vlasta Vukovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - May Labidi
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Sanja Strbe
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Lidija Baketic Oreskovic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Marko Sever
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marijan Tepes
- Department of Clinical Medicine, Faculty of Dental Medicine and Health, University of Osijek, 31000 Osijek, Croatia
| | - Mario Knezevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Ivan Barisic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Vladimir Blagaic
- Department of Obstetrics and Gynecology, Clinical Hospital Sveti Duh, 10000 Zagreb, Croatia
| | - Josipa Vlainic
- Laboratory for Advanced Genomics, Division of Molecular Medicine, lnstitute Ruder Boskovic, 10000 Zagreb, Croatia
| | - Ivan Dobric
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Mario Staresinic
- Department of Surgery, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Anita Skrtic
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Jurjevic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Alenka Boban Blagaic
- Department of Pharmacology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia (L.B.O.)
| | - Sven Seiwerth
- Department of Pathology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Opitz A, Petasch MS, Klappauf R, Kirschgens J, Hinz J, Dittmann L, Dathe AS, Quednow BB, Beste C, Stock AK. Does chronic use of amphetamine-type stimulants impair interference control? - A meta-analysis. Neurosci Biobehav Rev 2023; 146:105020. [PMID: 36581170 DOI: 10.1016/j.neubiorev.2022.105020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In substance use and addiction, inhibitory control is key to ignoring triggers, withstanding craving and maintaining abstinence. In amphetamine-type stimulant (ATS) users, most research focused on behavioral inhibition, but largely neglected the equally important subdomain of cognitive interference control. Given its crucial role in managing consumption, we investigated the relationship between interference control and chronic ATS use in adults. A database search (Pubmed & Web of Science) and relevant reviews were used to identify eligible studies. Effect sizes were estimated with random effects models. Subgroup, meta-regression, and sensitivity analyses explored heterogeneity in effect sizes. We identified 61 studies (53 datasets) assessing interference control in 1873 ATS users and 1905 controls. Findings revealed robust small effect sizes for ATS-related deficits in interference control, which were mainly seen in methamphetamine, as compared to MDMA users. The differential effects are likely due to tolerance-induced dopaminergic deficiencies (presumably most pronounced in methamphetamine users). Similarities between different ATS could be due to noradrenergic deficiencies; but elucidating their functional role in ATS users requires further/more research.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Miriam-Sophie Petasch
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Regine Klappauf
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Josephine Kirschgens
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Julian Hinz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Lena Dittmann
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Anthea S Dathe
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Boris B Quednow
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Switzerland; Biopsychology, Department of Psychology, School of Science, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland.
| |
Collapse
|
6
|
Stoops WW, Strickland JC, Hatton KW, Hays LR, Rayapati AO, Lile JA, Rush CR. Suvorexant maintenance enhances the reinforcing but not subjective and physiological effects of intravenous cocaine in humans. Pharmacol Biochem Behav 2022; 220:173466. [PMID: 36152876 PMCID: PMC9588557 DOI: 10.1016/j.pbb.2022.173466] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Preclinical research has sought to understand the role of the orexin system in cocaine addiction given the connection between orexin producing cells in the lateral hypothalamus and brain limbic areas. Exogenous administration of orexin peptides increased cocaine self-administration whereas selective orexin-1 receptor antagonists reduced cocaine self-administration in non-human animals. The first clinically available orexin antagonist, suvorexant (a dual orexin-1 and orexin-2 receptor antagonist), attenuated motivation for cocaine and cocaine conditioned place preference, as well as cocaine-associated impulsive responding, in rodents. This study aimed to translate those preclinical findings and determine whether suvorexant maintenance altered the pharmacodynamic effects of cocaine in humans. Seven non-treatment seeking subjects with cocaine use disorder completed this within-subject human laboratory study, and a partial data set was obtained from one additional subject. Subjects were maintained for at least three days on 0, 5, 10 and 20 mg oral suvorexant administered at 2230 h daily in random order. Subjects completed experimental sessions in which cocaine self-administration of 0, 10 and 30 mg/70 kg of intravenous cocaine was evaluated on a concurrent progressive ratio drug versus money choice task. Subjective and physiological effects of cocaine were also determined. Cocaine functioned as a reinforcer and produced prototypic dose-related subjective and physiological effects (e.g., increased ratings of "Stimulated" and heart rate). Suvorexant (10, 20 mg) increased self-administration of 10 mg/70 kg cocaine and decreased oral temperature but did not significantly alter any other effects of cocaine. Future research may seek to evaluate the effects of orexin-1 selective antagonists in combination with cocaine.
Collapse
Affiliation(s)
- William W Stoops
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA; Department of Psychology, University of Kentucky College of Arts and Sciences, 171 Funkhouser Drive, Lexington, KY 40506-0044, USA; Center on Drug and Alcohol Research, University of Kentucky College of Medicine, 845 Angliana Avenue, Lexington, KY 40508, USA.
| | - Justin C Strickland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 5510 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Kevin W Hatton
- Department of Anesthesiology, University of Kentucky College of Medicine, 800 Rose Street, Lexington, KY 40536, USA
| | - Lon R Hays
- Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA
| | - Abner O Rayapati
- Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA
| | - Joshua A Lile
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA; Department of Psychology, University of Kentucky College of Arts and Sciences, 171 Funkhouser Drive, Lexington, KY 40506-0044, USA
| | - Craig R Rush
- Department of Behavioral Science, University of Kentucky College of Medicine, 1100 Veterans Drive, Medical Behavioral Science Building, Lexington, KY 40536-0086, USA; Department of Psychiatry, University of Kentucky College of Medicine, 245 Fountain Court, Lexington, KY 40509-1810, USA; Department of Psychology, University of Kentucky College of Arts and Sciences, 171 Funkhouser Drive, Lexington, KY 40506-0044, USA
| |
Collapse
|