1
|
Barreca M, Lang N, Tarantelli C, Spriano F, Barraja P, Bertoni F. Antibody-drug conjugates for lymphoma patients: preclinical and clinical evidences. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:763-794. [PMID: 36654819 PMCID: PMC9834635 DOI: 10.37349/etat.2022.00112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 09/08/2022] [Indexed: 12/28/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a recent, revolutionary approach for malignancies treatment, designed to provide superior efficacy and specific targeting of tumor cells, compared to systemic cytotoxic chemotherapy. Their structure combines highly potent anti-cancer drugs (payloads or warheads) and monoclonal antibodies (Abs), specific for a tumor-associated antigen, via a chemical linker. Because the sensitive targeting capabilities of monoclonal Abs allow the direct delivery of cytotoxic payloads to tumor cells, these agents leave healthy cells unharmed, reducing toxicity. Different ADCs have been approved by the US Food and Drug Administration (FDA) and the European Medicines Agency (EMA) for the treatment of a wide range of malignant conditions, both as monotherapy and in combination with chemotherapy, including for lymphoma patients. Over 100 ADCs are under preclinical and clinical investigation worldwide. This paper it provides an overview of approved and promising ADCs in clinical development for the treatment of lymphoma. Each component of the ADC design, their mechanism of action, and the highlights of their clinical development progress are discussed.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Noémie Lang
- Division of Oncology, Department of Oncology, Faculty of Medicine, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Filippo Spriano
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90123 Palermo, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| |
Collapse
|
2
|
De Sanctis R, Jacobs F, Benvenuti C, Gaudio M, Franceschini R, Tancredi R, Pedrazzoli P, Santoro A, Zambelli A. From seaside to bedside: Current evidence and future perspectives in the treatment of breast cancer using marine compounds. Front Pharmacol 2022; 13:909566. [PMID: 36160422 PMCID: PMC9495264 DOI: 10.3389/fphar.2022.909566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/08/2022] [Indexed: 12/02/2022] Open
Abstract
To date, only few marine natural compounds have been proved to be active in breast cancer (BC). The main marine-derived drugs that have been studied for the treatment of BC are tubulin-binding agents (eribulin and plocabulin), DNA-targeting agents (cytarabine and minor groove binders—trabectedin and lurbinectedin) and Antibody-Drug Conjugates (ADCs). Notably, eribulin is the only approved cytotoxic drug for the treatment of advanced BC (ABC), while cytarabine has a limited indication in case of leptomeningeal diffusion of the disease. Also plocabulin showed limited activity in ABC but further research is needed to define its ultimate potential role. The available clinical data for both trabectedin and lurbinectedin are of particular interest in the treatment of BRCA-mutated tumours and HR deficient disease, probably due to a possible immune-mediated mechanism of action. One of the most innovative therapeutic options for the treatment of BC, particularly in TNBC and HER2-positive BC, are ADCs. Some of the ADCs were developed using a specific marine-derived cytotoxic molecule as payload called auristatin. Among these, clinical data are available on ladiratuzumab vedotin and glembatumumab vedotin in TNBC, and on disitamab vedotin and ALT-P7 in HER2-positive patients. A deeper knowledge of the mechanism of action and of the potential predictive factors for response to marine-derived drugs is important for their rational and effective use, alone or in combination. In this narrative review, we discuss the role of marine-derived drugs for the treatment of BC, although most of them are not approved, and the opportunities that could arise from the potential treasure trove of the sea for novel BC therapeutics.
Collapse
Affiliation(s)
- Rita De Sanctis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Flavia Jacobs
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Chiara Benvenuti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mariangela Gaudio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Raul Franceschini
- Department of Chemistry, Università degli studi di Milano Statale, Milan, Italy
| | - Richard Tancredi
- Medical Oncology Unit, ASST Melegnano Martesana, Ospedale A. Uboldo, Milan, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, Pavia, Italy
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Armando Santoro
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alberto Zambelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- *Correspondence: Alberto Zambelli,
| |
Collapse
|
3
|
Generation of a 3D melanoma model and visualization of doxorubicin uptake by fluorescence imaging. In Vitro Cell Dev Biol Anim 2022; 58:44-53. [PMID: 34981409 DOI: 10.1007/s11626-021-00636-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/05/2021] [Indexed: 01/02/2023]
Abstract
Melanoma is the most dangerous type of skin cancer and is responsible for 75% of deaths from skin cancers. For an accurate evaluation of potential treatment efficacy, it is important to use study models as close as possible to the in vivo conditions. A 3D model consisting of B16F10 spheroids was developed using liquid overlay technique on plates coated with 1% agarose, in the presence of 1% methylcellulose and L929-conditioned medium. The model is suitable and can be further used for more complex in vitro drug testing than the classical 2D approach. For exemplification, the behavior of a well-known cytostatic, doxorubicin (DOX), was evaluated in spheroids as compared to classical 2D culture conditions. Fluorescence imaging was used to visualize DOX uptake by B16F10 spheroids at different periods of time. The results showed that a much higher DOX concentration is necessary to produce similar effects compared with the monolayer. The fluorescence images revealed that at least 4 h of stimulation is needed for a sufficient DOX uptake. The 3D model developed in this study was suitable to investigate drug penetration in time. Our findings may explain the decrease of the doxorubicin therapeutical effect, suggesting the need of maintaining the drug concentration at the tumoral place for at least 2 h upon administration. Similar or more advanced studies can lead to a better understanding of drug delivery kinetics and distribution upon administration, conducing toward a better performance in designing suitable delivery systems for obtaining the optimum dose-response effect.
Collapse
|
4
|
Tong JTW, Harris PWR, Brimble MA, Kavianinia I. An Insight into FDA Approved Antibody-Drug Conjugates for Cancer Therapy. Molecules 2021; 26:5847. [PMID: 34641391 PMCID: PMC8510272 DOI: 10.3390/molecules26195847] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/12/2022] Open
Abstract
The large number of emerging antibody-drug conjugates (ADCs) for cancer therapy has resulted in a significant market 'boom', garnering worldwide attention. Despite ADCs presenting huge challenges to researchers, particularly regarding the identification of a suitable combination of antibody, linker, and payload, as of September 2021, 11 ADCs have been granted FDA approval, with eight of these approved since 2017 alone. Optimism for this therapeutic approach is clear, despite the COVID-19 pandemic, 2020 was a landmark year for deals and partnerships in the ADC arena, suggesting that there remains significant interest from Big Pharma. Herein we review the enthusiasm for ADCs by focusing on the features of those approved by the FDA, and offer some thoughts as to where the field is headed.
Collapse
Affiliation(s)
- Juliana T. W. Tong
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (J.T.W.T.); (P.W.R.H.)
- Maurice Wilkins Centre for Molecular Biodiversity, The University of Auckland, Auckland 1010, New Zealand
| | - Paul W. R. Harris
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (J.T.W.T.); (P.W.R.H.)
- Maurice Wilkins Centre for Molecular Biodiversity, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Margaret A. Brimble
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (J.T.W.T.); (P.W.R.H.)
- Maurice Wilkins Centre for Molecular Biodiversity, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Iman Kavianinia
- School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; (J.T.W.T.); (P.W.R.H.)
- Maurice Wilkins Centre for Molecular Biodiversity, The University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Nguyen NHL, Kim S, Lindemann G, Berry V. COVID-19 Spike Protein Induced Phononic Modification in Antibody-Coupled Graphene for Viral Detection Application. ACS NANO 2021; 15:11743-11752. [PMID: 34128653 PMCID: PMC8231663 DOI: 10.1021/acsnano.1c02549] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/10/2021] [Indexed: 05/09/2023]
Abstract
With an incubation time of about 5 days, early diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is critical to control the spread of the coronavirus disease 2019 (COVID-19) that killed more than 3 million people in its first 1.5 years. Here, we report on the modification of the dopant density and the phononic energy of antibody-coupled graphene when it interfaces with SARS-CoV-2 spike protein. This graphene chemeo-phononic system was able to detect SARS-CoV-2 spike protein at the limit of detection of ∼3.75 and ∼1 fg/mL in artificial saliva and phosphate-buffered saline, respectively. It also exhibited selectivity over proteins in saliva and MERS-CoV spike protein. Since the change in graphene phononics is monitored instead of the phononic signature of the analyte, this optical platform can be replicated for other COVID variants and specific-binding-based biodetection applications.
Collapse
Affiliation(s)
- Ngoc Hoang Lan Nguyen
- Department of Chemical Engineering,
University of Illinois at Chicago, 929 W. Taylor Street,
Chicago, Illinois 60607, United States
| | - Sungjoon Kim
- Department of Chemical Engineering,
University of Illinois at Chicago, 929 W. Taylor Street,
Chicago, Illinois 60607, United States
| | - Garrett Lindemann
- Ramaco LLC, 1101 Sugarview
Drive, Sheridan, Wyoming 82801, United States
| | - Vikas Berry
- Department of Chemical Engineering,
University of Illinois at Chicago, 929 W. Taylor Street,
Chicago, Illinois 60607, United States
| |
Collapse
|
6
|
Marques AC, Costa PJ, Velho S, Amaral MH. Functionalizing nanoparticles with cancer-targeting antibodies: A comparison of strategies. J Control Release 2020; 320:180-200. [PMID: 31978444 DOI: 10.1016/j.jconrel.2020.01.035] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 01/07/2023]
Abstract
Standard cancer therapies sometimes fail to deliver chemotherapeutic drugs to tumor cells in a safe and effective manner. Nanotechnology takes the lead in providing new therapeutic options for cancer due to major potential for selective targeting and controlled drug release. Antibodies and antibody fragments are attracting much attention as a source of targeting ligands to bind specific receptors that are overexpressed on cancer cells. Therefore, researchers are devoting time and effort to develop targeting strategies based on nanoparticles functionalized with antibodies, which hold great promise to enhance therapeutic efficacy and circumvent severe side effects. Several methods have been described to immobilize antibodies on the surface of nanoparticles. However, selecting the most appropriate for each application is challenging but also imperative to preserve antigen binding ability and yield stable antibody-conjugated nanoparticles. From this perspective, we aim to provide considerable knowledge on the most widely used methods of functionalization that can be helpful for decision-making and design of conjugation protocols as well. This review summarizes adsorption, covalent conjugation (carbodiimide, maleimide and "click" chemistries) and biotin-avidin interaction, while discussing the advantages, limitations and relevant therapeutic approaches currently under investigation.
Collapse
Affiliation(s)
- A C Marques
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| | - P J Costa
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S Velho
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal; IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, R. Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - M H Amaral
- UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto (FFUP), R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
7
|
St. Amant AH, Huang F, Lin J, Lemen D, Chakiath C, Mao S, Fazenbaker C, Zhong H, Harper J, Xu W, Patel N, Adams L, Vijayakrishnan B, Howard PW, Marelli M, Wu H, Gao C, Read de Alaniz J, Christie RJ. A Reactive Antibody Platform for One-Step Production of Antibody–Drug Conjugates through a Diels–Alder Reaction with Maleimide. Bioconjug Chem 2019; 30:2340-2348. [DOI: 10.1021/acs.bioconjchem.9b00436] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Andre H. St. Amant
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - Fengying Huang
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| | - Jia Lin
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| | - Daniel Lemen
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| | - Chacko Chakiath
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| | - Shenlan Mao
- AstraZeneca Oncology R&D, Gaithersburg, Maryland 20878, United States
| | | | - Haihong Zhong
- AstraZeneca Oncology R&D, Gaithersburg, Maryland 20878, United States
| | - Jay Harper
- AstraZeneca Oncology R&D, Gaithersburg, Maryland 20878, United States
| | - Wenshu Xu
- Spirogen, London E1 2AX, United Kingdom
| | | | | | | | | | - Marcello Marelli
- AstraZeneca Oncology R&D, Gaithersburg, Maryland 20878, United States
| | - Herren Wu
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| | - Changshou Gao
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106-9510, United States
| | - R. James Christie
- Antibody Discovery and Protein Engineering Department, AstraZeneca R&D, Gaithersburg, Maryland 20878, United States
| |
Collapse
|
8
|
Abstract
This Review is devoted to the chemistry of macrocyclic peptides having heterocyclic fragments in their structure. These motifs are present in many natural products and synthetic macrocycles designed against a particular biochemical target. Thiazole and oxazole are particularly common constituents of naturally occurring macrocyclic peptide molecules. This frequency of occurrence is because the thiazole and oxazole rings originate from cysteine, serine, and threonine residues. Whereas other heteroaryl groups are found less frequently, they offer many insightful lessons that range from conformational control to receptor/ligand interactions. Many options to develop new and improved technologies to prepare natural products have appeared in recent years, and the synthetic community has been pursuing synthetic macrocycles that have no precedent in nature. This Review attempts to summarize progress in this area.
Collapse
Affiliation(s)
- Ivan V Smolyar
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| | - Andrei K Yudin
- Davenport Research Laboratories, Department of Chemistry , University of Toronto , 80 St. George Street , Toronto , Ontario M5S 3H6 , Canada
| | - Valentine G Nenajdenko
- Department of Chemistry , Moscow State University , Leninskije Gory , 199991 Moscow , Russia
| |
Collapse
|