1
|
Rainot A, D'Anna L, Terenzi A, Rouget R, Grandemange S, Piro B, Barone G, Barbault F, Monari A. In Silico Design of a Solution-Gated Graphene Transistor Sensor for the Efficient Detection of Guanine Quadruplexes. J Phys Chem Lett 2024; 15:10881-10887. [PMID: 39441974 DOI: 10.1021/acs.jpclett.4c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Guanine quadruplexes (G4s) are nucleic acid structures present in diverse regions of the genome, such as telomeres and transcription initiators. Recently, the different biological roles of G4s have been evidenced as well as their role as biomarkers for tumors or viral infections. However, the fast and efficient detection of G4s in complex matrices remains elusive. In this contribution, by using long-scale molecular dynamics simulations, we propose the design of a biosensor based on organic field-effect transistors recognizing G4s. In particular, we show that the interaction of the G4s with the biosensor is translated into a change in the charge density profile, which correlates with the electrical transduction of the signal, thus allowing the detection of the nucleic acid structure. We also provide rules of thumb for the optimization of the design of the device and more generally for the integration of computationally driven design approaches.
Collapse
Affiliation(s)
- Aurianne Rainot
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Luisa D'Anna
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Alessio Terenzi
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | - Raphael Rouget
- Université de Lorraine and CNRS, UMR 7039 CRAN, F-54000 Nancy, France
| | | | - Benoit Piro
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| | - Giampaolo Barone
- Università degli Studi di Palermo, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies Viale delle Scienze, Edificio 17, 90128 Palermo, Italy
| | | | - Antonio Monari
- Université Paris Cité, CNRS, ITODYS, F-75013 Paris, France
| |
Collapse
|
2
|
Gibney A, Kellett A. Gene Editing with Artificial DNA Scissors. Chemistry 2024; 30:e202401621. [PMID: 38984588 DOI: 10.1002/chem.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Artificial metallo-nucleases (AMNs) are small molecule DNA cleavage agents, also known as DNA molecular scissors, and represent an important class of chemotherapeutic with high clinical potential. This review provides a primary level of exploration on the concepts key to this area including an introduction to DNA structure, function, recognition, along with damage and repair mechanisms. Building on this foundation, we describe hybrid molecules where AMNs are covalently attached to directing groups that provide molecular scissors with enhanced or sequence specific DNA damaging capabilities. As this research field continues to evolve, understanding the applications of AMNs along with synthetic conjugation strategies can provide the basis for future innovations, particularly for designing new artificial gene editing systems.
Collapse
Affiliation(s)
- Alex Gibney
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Andrew Kellett
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
3
|
Holden L, Gkika KS, Burke CS, Long C, Keyes TE. Selective, Disruptive Luminescent Ru(II) Polypyridyl Probes of G-Quadruplex. Inorg Chem 2023; 62:2213-2227. [PMID: 36703307 PMCID: PMC9906756 DOI: 10.1021/acs.inorgchem.2c03903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sensors capable of transducing G-quadruplex DNA binding are important both in solution and for imaging and interrogation in cellulo. Ru(II)-based light switches incorporating dipyridylphenazine (dppz) ligands are effective probes for recognition and imaging of DNA and its polymorphs including G-quadruplex, although selectivity is a limitation. While the majority of Ru(II)-based light switches reported to date, stabilize the quadruplex, imaging/theranostic probes that can disrupt G4s are of potentially enormous value in study and therapy for a range of disease states. We report here, on a Ru(II) complex (Ru-PDC3) that assembles the light switch capability of a Ru(II) dipyridylphenazine complex with the well-known G4-selective ligand Phen-DC3, into a single structure. The complex shows the anticipated light switch effect and strong affinity for G4 structures. Affinity depended on the G4 topology and sequence, but across all structures bar one, it was roughly an order of magnitude greater than for duplex or single-stranded DNA. Moreover, photophysical and Raman spectral data showed clear discrimination between duplex DNA and G4-bound structures offering the prospect of discrimination in imaging as well as in solution. Crucially, unlike the constituent components of the probe, Ru-PDC3 is a powerful G4 disrupter. From circular dichroism (CD), a reduction of ellipticity of the G4 between 70 and 95% was observed depending on topology and in many cases was accompanied by an induced CD signal for the metal complex. The extent of change in ellipticity is amongst the largest reported for small-molecule ligand G4 binding. While a promising G4 probe, without modification, the complex is fully water-soluble and readily permeable to live cells.
Collapse
|
4
|
Gillard M, Piraux G, Daenen M, Abraham M, Troian‐Gautier L, Bar L, Bonnet H, Loiseau F, Jamet H, Dejeu J, Defrancq E, Elias B. Photo‐Oxidizing Ruthenium(II) Complexes with Enhanced Visible‐Light Absorption and G‐quadruplex DNA Binding Abilities. Chemistry 2022; 28:e202202251. [DOI: 10.1002/chem.202202251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Martin Gillard
- Université catholique de Louvain (UCLouvain) Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Guillaume Piraux
- Université catholique de Louvain (UCLouvain) Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Martin Daenen
- Université catholique de Louvain (UCLouvain) Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Michaël Abraham
- Université catholique de Louvain (UCLouvain) Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Ludovic Troian‐Gautier
- Université catholique de Louvain (UCLouvain) Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| | - Laure Bar
- Université Grenoble Alpes (UGA) Département de Chimie Moléculaire, UMR CNRS 5250 CS 40700 - 38058 Grenoble France)
| | - Hugues Bonnet
- Université Grenoble Alpes (UGA) Département de Chimie Moléculaire, UMR CNRS 5250 CS 40700 - 38058 Grenoble France)
| | - Frédérique Loiseau
- Université Grenoble Alpes (UGA) Département de Chimie Moléculaire, UMR CNRS 5250 CS 40700 - 38058 Grenoble France)
| | - Hélène Jamet
- Université Grenoble Alpes (UGA) Département de Chimie Moléculaire, UMR CNRS 5250 CS 40700 - 38058 Grenoble France)
| | - Jérôme Dejeu
- Université Grenoble Alpes (UGA) Département de Chimie Moléculaire, UMR CNRS 5250 CS 40700 - 38058 Grenoble France)
| | - Eric Defrancq
- Université Grenoble Alpes (UGA) Département de Chimie Moléculaire, UMR CNRS 5250 CS 40700 - 38058 Grenoble France)
| | - Benjamin Elias
- Université catholique de Louvain (UCLouvain) Institut de la Matière Condensée et des Nanosciences (IMCN) Molecular Chemistry, Materials and Catalysis (MOST) Place Louis Pasteur 1, bte L4.01.02 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
5
|
Mendes E, Aljnadi IM, Bahls B, Victor BL, Paulo A. Major Achievements in the Design of Quadruplex-Interactive Small Molecules. Pharmaceuticals (Basel) 2022; 15:300. [PMID: 35337098 PMCID: PMC8953082 DOI: 10.3390/ph15030300] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022] Open
Abstract
Organic small molecules that can recognize and bind to G-quadruplex and i-Motif nucleic acids have great potential as selective drugs or as tools in drug target discovery programs, or even in the development of nanodevices for medical diagnosis. Hundreds of quadruplex-interactive small molecules have been reported, and the challenges in their design vary with the intended application. Herein, we survey the major achievements on the therapeutic potential of such quadruplex ligands, their mode of binding, effects upon interaction with quadruplexes, and consider the opportunities and challenges for their exploitation in drug discovery.
Collapse
Affiliation(s)
- Eduarda Mendes
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| | - Israa M. Aljnadi
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bárbara Bahls
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Bruno L. Victor
- Faculty of Sciences, BioISI, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, 1749-016 Lisbon, Portugal;
| | - Alexandra Paulo
- Faculty of Pharmacy, Research Institute for Medicines (iMed.Ulisboa), Universidade de Lisboa, 1649-003 Lisbon, Portugal; (E.M.); (I.M.A.); (B.B.)
| |
Collapse
|
6
|
Palma E, Carvalho J, Cruz C, Paulo A. Metal-Based G-Quadruplex Binders for Cancer Theranostics. Pharmaceuticals (Basel) 2021; 14:605. [PMID: 34201682 PMCID: PMC8308583 DOI: 10.3390/ph14070605] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 12/11/2022] Open
Abstract
The ability of fluorescent small molecules, such as metal complexes, to selectively recognize G-quadruplex (G4) structures has opened a route to develop new probes for the visualization of these DNA structures in cells. The main goal of this review is to update the most recent research efforts towards the development of novel cancer theranostic agents using this type of metal-based probes that specifically recognize G4 structures. This encompassed a comprehensive overview of the most significant progress in the field, namely based on complexes with Cu, Pt, and Ru that are among the most studied metals to obtain this class of molecules. It is also discussed the potential interest of obtaining G4-binders with medical radiometals (e.g., 99mTc, 111In, 64Cu, 195mPt) suitable for diagnostic and/or therapeutic applications within nuclear medicine modalities, in order to enable their theranostic potential.
Collapse
Affiliation(s)
- Elisa Palma
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (J.C.); (C.C.)
| | - António Paulo
- C2TN-Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal;
- DECN-Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 2695-066 Bobadela LRS, Portugal
| |
Collapse
|
7
|
Farine G, Migliore C, Terenzi A, Lo Celso F, Santoro A, Bruno G, Bonsignore R, Barone G. On the G‐Quadruplex Binding of a New Class of Nickel(II), Copper(II), and Zinc(II) Salphen‐Like Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Gianluca Farine
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
| | - Claudio Migliore
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
| | - Alessio Terenzi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
| | - Fabrizio Lo Celso
- Dipartimento di Fisica e Chimica “E. Segre” Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
- Institute of Structure of Matter National Research Council Laboratorio Liquidi Ionici Rome Italy
| | - Antonio Santoro
- Dipartimento di Scienze Chimiche Biologiche Farmaceutiche e Ambientali Università degli Studi di Messina Via Stagno d'Alcontres 98166 Messina Italy
| | - Giuseppe Bruno
- Dipartimento di Scienze Chimiche Biologiche Farmaceutiche e Ambientali Università degli Studi di Messina Via Stagno d'Alcontres 98166 Messina Italy
| | - Riccardo Bonsignore
- Department of Chemistry Technical University of Munich (TUM) Lichtenbergstr. 4 85748 Garching b. München Germany
| | - Giampaolo Barone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche Università degli Studi di Palermo Viale delle Scienze, Edificio 17 90128 Palermo Italy
| |
Collapse
|
8
|
Rodriguez J, Mosquera J, Learte-Aymamı́ S, Vázquez ME, Mascareñas JL. Stimuli-Responsive DNA Binding by Synthetic Systems. Acc Chem Res 2020; 53:2286-2298. [PMID: 32997936 DOI: 10.1021/acs.accounts.0c00415] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA is the molecule responsible for the storage and transmission of the genetic information in living organisms. The expression of this information is highly regulated. In eukaryotes, it is achieved mainly at the transcription level thanks to specialized proteins called transcription factors (TFs) that recognize specific DNA sequences, thereby promoting or inhibiting the transcription of particular genes. In many cases, TFs are present in the cell in an inactive form but become active in response to an external signal, which might modify their localization and DNA binding properties or modulate their interactions with the rest of the transcriptional machinery. As a result of the crucial role of TFs, the design of synthetic peptides or miniproteins that can emulate their DNA binding properties and eventually respond to external stimuli is of obvious interest. On the other hand, although the B-form double helix is the most common DNA secondary structure, it is not the only one with an essential biological function. Guanine quadruplexes (GQs) have received considerable attention due to their critical role in the regulation of gene expression, which is usually associated with a change in the GQ conformation. Thus, the development of GQ probes whose properties can be controlled using external signals is also of significant relevance.In this Account, we present a summary of the recent efforts toward the development of stimuli-responsive synthetic DNA binders with a particular emphasis on our own contributions. We first introduce the structure of B and GQ DNAs, and some of the main factors underlying their selective recognition. We then discuss some of the different approaches used for the design of stimulus-mediated DNA binders. We have organized our discussion according to whether the interaction takes place with duplex or guanine quadruplex DNAs, and each section is divided according to the nature of the stimulus (i.e., physical or chemical). Regarding physical stimuli, light (through the incorporation of photolabile protecting groups or photoisomerizable agents) is the most common input for the activation/deactivation of DNA binding events. With respect to chemical signals, the use of metals (through the incorporation of metal-coordinating groups in the DNA binding agent) has allowed the development of a wide range of stimuli-responsive DNA binders. More recently, redox-based systems have also been used to control DNA interactions.This Account ends with a "Conclusions and Outlook" section highlighting some of the general lessons that have been learned and future directions toward further advancing the field.
Collapse
Affiliation(s)
- Jessica Rodriguez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Jesús Mosquera
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1XQ, United Kingdom
| | - Soraya Learte-Aymamı́
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - José Luis Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|