1
|
Cheng Y, Miller MJ, Lei F. Molecular Innovations Shaping Beak Morphology in Birds. Annu Rev Anim Biosci 2025; 13:99-119. [PMID: 39546421 DOI: 10.1146/annurev-animal-030424-074906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The beak, a pivotal evolutionary trait characterized by high morphological diversity and plasticity, has enabled birds to survive mass extinction events and subsequently radiate into diverse ecological niches worldwide. This remarkable ecological adaptability underscores the importance of uncovering the molecular mechanisms shaping avian beak morphology, particularly benefiting from the rapidly advancing archives of genomics and epigenomics. We review the latest advancements in understanding how genetic and epigenetic innovations control or regulate beak development and drive beak morphological adaptation and diversification over the past two decades. We conclude with several recommendations for future endeavors, expanding to more bird lineages, with a focus on beak shape and the lower beak, and conducting functional experiments. By directing research efforts toward these aspects and integrating advanced omics techniques, the complex molecular mechanisms involved in avian beak evolution and morphogenesis will be deeply interpreted.
Collapse
Affiliation(s)
- Yalin Cheng
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
- College of Life Science, Hebei University, Baoding, China
| | | | - Fumin Lei
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| |
Collapse
|
2
|
Exploring craniofacial and dental development with microRNAs. Biochem Soc Trans 2022; 50:1897-1909. [DOI: 10.1042/bst20221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022]
Abstract
microRNAs (miRs) are small RNA molecules that regulate many cellular and developmental processes. They control gene expression pathways during specific developmental time points and are required for tissue homeostasis and stem cell maintenance. miRs as therapeutic reagents in tissue regeneration and repair hold great promise and new technologies are currently being designed to facilitate their expression or inhibition. Due to the large amount of miR research in cells and cancer many cellular processes and gene networks have been delineated however, their in vivo response can be different in complex tissues and organs. Specifically, this report will discuss animal developmental models to understand the role of miRs as well as xenograft, disease, and injury models. We will discuss the role of miRs in clinical studies including their diagnostic function, as well as their potential ability to correct craniofacial diseases.
Collapse
|
3
|
Richbourg HA, Hu DP, Xu Y, Barczak AJ, Marcucio RS. miR-199 family contributes to regulation of sonic hedgehog expression during craniofacial development. Dev Dyn 2020; 249:1062-1076. [PMID: 32391617 DOI: 10.1002/dvdy.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The frontonasal ectodermal zone (FEZ) is a signaling center that regulates patterned development of the upper jaw, and Sonic hedgehog (SHH) mediates FEZ activity. Induction of SHH expression in the FEZ results from SHH-dependent signals from the brain and neural crest cells. Given the role of miRNAs in modulating gene expression, we investigated the extent to which miRNAs regulate SHH expression and FEZ signaling. RESULTS In the FEZ, the miR-199 family appears to be regulated by SHH-dependent signals from the brain; expression of this family increased from HH18 to HH22, and upon activation of SHH signaling in the brain. However, the miR-199 family is more broadly expressed in the mesenchyme of the frontonasal process and adjacent neuroepithelium. Downregulating the miR-199 genes expanded SHH expression in the FEZ, resulting in wider faces, while upregulating miR-199 genes resulted in decreased SHH expression and narrow faces. Hypoxia inducible factor 1 alpha (HIF1A) and mitogen-activated protein kinase kinase kinase 4 (MAP3K4) appear to be potential targets of miR-199b. Reduction of MAP3K4 altered beak development but increased apoptosis, while reducing HIF1A reduced expression of SHH in the FEZ and produced malformations independent of apoptosis. CONCLUSIONS Our results demonstrate that this miRNA family appears to participate in regulating SHH expression in the FEZ; however, specific molecular mechanisms remain unknown.
Collapse
Affiliation(s)
- Heather A Richbourg
- Department of Orthopaedic Surgery, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Diane P Hu
- Department of Orthopaedic Surgery, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, USA
| | - Yanhua Xu
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Zhejiang University Life Sciences Institute, Hangzhou, China
| | - Andrea J Barczak
- Functional Genomics Core, University of California, San Francisco, San Francisco, California, USA
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
4
|
Zhu G, Zhang C, Wang Y, Wang Y, Li D, Yu X, Zhu W, Fu C, Lou S, Fan L, Ma L, Wang L, Pan Y. Variants in miRNA regulome and their association with the risk of nonsyndromic orofacial clefts. Epigenomics 2020; 12:1109-1121. [PMID: 32408759 DOI: 10.2217/epi-2020-0124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate the associations between single nucleotide polymorphisms (SNPs) in miRNA regulome and nonsyndromic orofacial clefts. Materials & methods: The associations were evaluated by logistic regression model in stage I (504 cases and 455 controls) and stage II (1500 cases and 1386 controls). Functional experiments including luciferase activity assay, cell apoptosis and proliferation, serum miRNA expression, and mouse embryo RNA sequencing were performed. Results: Rs3830766 in the enhancer of hsa-miR-4260 was associated with cleft lip only (CLO) and enhancer activity. Hsa-miR-4260 expression decreased in the serum of CLO. Overexpression of miR-4260 inhibited cell proliferation and promoted cell apoptosis. UBB was the target gene of hsa-miR-4260. Conclusion: Rs3830766 in the hsa-miR-4260 enhancer that can interact with UBB was relevant to CLO.
Collapse
Affiliation(s)
- Guirong Zhu
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - Chi Zhang
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - Yuting Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - Yuli Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - Dandan Li
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - Xin Yu
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - Weihao Zhu
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - Chengyi Fu
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - Shu Lou
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - Liwen Fan
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - Lan Ma
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China
| | - Lin Wang
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| | - Yongchu Pan
- Institute of Stomatology, Nanjing Medical University, Nanjing, PR China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
5
|
Wang H, Liu G, Li T, Wang N, Wu J, Zhi H. MiR-330-3p functions as a tumor suppressor that regulates glioma cell proliferation and migration by targeting CELF1. Arch Med Sci 2020; 16:1166-1175. [PMID: 32864006 PMCID: PMC7444697 DOI: 10.5114/aoms.2020.95027] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/24/2017] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION Glioma is a common type of neoplasm that occurs in the central nervous system. miRNAs have been demonstrated to act as critical regulators of carcinogenesis and tumor progression in multiple cancers, but the molecular mechanism of miR-330-3p in glioma remained unclear. The purpose of the study was to explore the role of miR-330-3p in glioma cell reproduction and migration. MATERIAL AND METHODS The expression levels of miR-330-3p and CELF1 in 27 glioma tissue specimens and human glioma cell lines were examined by qRT-PCR and western blot. The TargetScan database was used to predict the relationship between miR-330-3p and CELF1. Then the target relationship was verified using dual-luciferase reporter assay. The effects of miR-330-3p/CELF1 on glioma cell proliferation were evaluated by MTT and colony formation assay. Wound healing assay was employed to measure the migration ability of glioma cells. RESULTS MiR-330-3p was found lowly expressed in glioma tissues and cells compared with adjacent tissues and normal astrocytes, while CELF1 expression was relatively high in the glioma tissues and cells. Dual-luciferase reporter assay confirmed that miR-330-3p could directly target CELF1. Furthermore, miR-330-3p could down-regulate the expression of CELF1, therefore suppressing glioma cell reproduction and migration. CONCLUSIONS MiR-330-3p inhibited the propagation and migration of glioma cells by repressing CELF1 expression.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Guijing Liu
- Department of Cardiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Tao Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Naizhu Wang
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Jingkun Wu
- Department of Neurosurgery, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| | - Hua Zhi
- Department of Cardiology, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, China
| |
Collapse
|
6
|
Suzuki A, Yoshioka H, Summakia D, Desai NG, Jun G, Jia P, Loose DS, Ogata K, Gajera MV, Zhao Z, Iwata J. MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse. BMC Genomics 2019; 20:852. [PMID: 31727022 PMCID: PMC6854646 DOI: 10.1186/s12864-019-6238-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/29/2019] [Indexed: 02/07/2023] Open
Abstract
Background Cleft lip (CL), one of the most common congenital birth defects, shows considerable geographic and ethnic variation, with contribution of both genetic and environmental factors. Mouse genetic studies have identified several CL-associated genes. However, it remains elusive how these CL-associated genes are regulated and involved in CL. Environmental factors may regulate these genes at the post-transcriptional level through the regulation of non-coding microRNAs (miRNAs). In this study, we sought to identify miRNAs associated with CL in mice. Results Through a systematic literature review and a Mouse Genome Informatics (MGI) database search, we identified 55 genes that were associated with CL in mice. Subsequent bioinformatic analysis of these genes predicted that a total of 33 miRNAs target multiple CL-associated genes, with 20 CL-associated genes being potentially regulated by multiple miRNAs. To experimentally validate miRNA function in cell proliferation, we conducted cell proliferation/viability assays for the selected five candidate miRNAs (miR-124-3p, let-7a-5p, let-7b-5p, let-7c-5p, and let-7d-5p). Overexpression of miR-124-3p, but not of the others, inhibited cell proliferation through suppression of CL-associated genes in cultured mouse embryonic lip mesenchymal cells (MELM cells) isolated from the developing mouse lip region. By contrast, miR-124-3p knockdown had no effect on MELM cell proliferation. This miRNA-gene regulatory mechanism was mostly conserved in O9–1 cells, an established cranial neural crest cell line. Expression of miR-124-3p was low in the maxillary processes at E10.5, when lip mesenchymal cells proliferate, whereas it was greatly increased at later developmental stages, suggesting that miR-124-3p expression is suppressed during the proliferation phase in normal palate development. Conclusions Our findings indicate that upregulated miR-124-3p inhibits cell proliferation in cultured lip cells through suppression of CL-associated genes. These results will have a significant impact, not only on our knowledge about lip morphogenesis, but also on the development of clinical approaches for the diagnosis and prevention of CL.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hiroki Yoshioka
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Dima Summakia
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA
| | - Neha G Desai
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Goo Jun
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - David S Loose
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kenichi Ogata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mona V Gajera
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA.,Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhongming Zhao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.,Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, 1941 East Road, BBS 4208, Houston, TX, 77054, USA. .,Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX, USA. .,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
7
|
Mukhopadhyay P, Smolenkova I, Warner D, Pisano MM, Greene RM. Spatio-Temporal Expression and Functional Analysis of miR-206 in Developing Orofacial Tissue. Microrna 2019; 8:43-60. [PMID: 30068287 DOI: 10.2174/2211536607666180801094528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 07/27/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Development of the mammalian palate is dependent on precise, spatiotemporal expression of a panoply of genes. MicroRNAs (miRNAs), the largest family of noncoding RNAs, function as crucial modulators of cell and tissue differentiation, regulating expression of key downstream genes. OBSERVATIONS Our laboratory has previously identified several developmentally regulated miRNAs, including miR-206, during critical stages of palatal morphogenesis. The current study reports spatiotemporal distribution of miR-206 during development of the murine secondary palate (gestational days 12.5-14.5). RESULT AND CONCLUSION Potential cellular functions and downstream gene targets of miR-206 were investigated using functional assays and expression profiling, respectively. Functional analyses highlighted potential roles of miR-206 in governing TGFß- and Wnt signaling in mesenchymal cells of the developing secondary palate. In addition, altered expression of miR-206 within developing palatal tissue of TGFß3-/- fetuses reinforced the premise that crosstalk between this miRNA and TGFß3 is crucial for secondary palate development.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Irina Smolenkova
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Dennis Warner
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Michele M Pisano
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Robert M Greene
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
8
|
Salivary microRNAs as new molecular markers in cleft lip and palate: a new frontier in molecular medicine. Oncotarget 2018; 9:18929-18938. [PMID: 29721173 PMCID: PMC5922367 DOI: 10.18632/oncotarget.24838] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/28/2018] [Indexed: 12/02/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous non-coding RNAs of about twenty-two nucleotides that regulate gene expression through post-transcriptional control. The purpose of the present study was to identify and describe the salivary miRNAs in cleft lip and palate (CLP) patients comparing them with a control healthy group. Twelve patients (mean age 11.9 ± 2.42 years; 6M/6F) formed the study group. The control group was created selecting twelve healthy subjects matched for age and sex with study group. We recorded differences in miRNA expression profile between the saliva of CLP patients and the control group. Specifically, miR-141, miR-223, and miR-324-3p were mostly deregulated between the study and control groups. Interestingly, these three miRNAs are the regulators of the following genes correlated to cleft palate and lip development: MTHFR, SATB2, PVRL1. The present study showed that collecting saliva samples is a non-invasive procedure and is well accepted by CLP patients. MiRNAs can be easily isolated and identified. The differences in regulation of miR-141, miR-223 and miR-324-3p between the two groups of salivary samples suggest that these molecules are valid prognostic biomarkers and therapy dynamic response indicators, also for the accuracy and non-invasive sampling and dosing system.
Collapse
|
9
|
Human teratogens and genetic phenocopies. Understanding pathogenesis through human genes mutation. Eur J Med Genet 2016; 60:22-31. [PMID: 27639441 DOI: 10.1016/j.ejmg.2016.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022]
Abstract
Exposure to teratogenic drugs during pregnancy is associated with a wide range of embryo-fetal anomalies and sometimes results in recurrent and recognizable patterns of malformations; however, the comprehension of the mechanisms underlying the pathogenesis of drug-induced birth defects is difficult, since teratogenesis is a multifactorial process which is always the result of a complex interaction between several environmental factors and the genetic background of both the mother and the fetus. Animal models have been extensively used to assess the teratogenic potential of pharmacological agents and to study their teratogenic mechanisms; however, a still open issue concerns how the information gained through animal models can be translated to humans. Instead, significant information can be obtained by the identification and analysis of human genetic syndromes characterized by clinical features overlapping with those observed in drug-induced embryopathies. Until now, genetic phenocopies have been reported for the embryopathies/fetopathies associated with prenatal exposure to warfarin, leflunomide, mycophenolate mofetil, fluconazole, thalidomide and ACE inhibitors. In most cases, genetic phenocopies are caused by mutations in genes encoding for the main targets of teratogens or for proteins belonging to the same molecular pathways. The aim of this paper is to review the proposed teratogenic mechanisms of these drugs, by the analysis of human monogenic disorders and their molecular pathogenesis.
Collapse
|
10
|
Ding HL, Hooper JE, Batzel P, Eames BF, Postlethwait JH, Artinger KB, Clouthier DE. MicroRNA Profiling during Craniofacial Development: Potential Roles for Mir23b and Mir133b. Front Physiol 2016; 7:281. [PMID: 27471470 PMCID: PMC4943961 DOI: 10.3389/fphys.2016.00281] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/21/2016] [Indexed: 01/01/2023] Open
Abstract
Defects in mid-facial development, including cleft lip/palate, account for a large number of human birth defects annually. In many cases, aberrant gene expression results in either a reduction in the number of neural crest cells (NCCs) that reach the frontonasal region and form much of the facial skeleton or subsequent failure of NCC patterning and differentiation into bone and cartilage. While loss of gene expression is often associated with developmental defects, aberrant upregulation of expression can also be detrimental. microRNAs (miRNAs) are a class of non-coding RNAs that normally repress gene expression by binding to recognition sequences located in the 3′ UTR of target mRNAs. miRNAs play important roles in many developmental systems, including midfacial development. Here, we take advantage of high throughput RNA sequencing (RNA-seq) from different tissues of the developing mouse midface to interrogate the miRs that are expressed in the midface and select a subset for further expression analysis. Among those examined, we focused on four that showed the highest expression level in in situ hybridization analysis. Mir23b and Mir24.1 are specifically expressed in the developing mouse frontonasal region, in addition to areas in the perichondrium, tongue musculature and cranial ganglia. Mir23b is also expressed in the palatal shelves and in anterior epithelium of the palate. In contrast, Mir133b and Mir128.2 are mainly expressed in head and trunk musculature. Expression analysis of mir23b and mir133b in zebrafish suggests that mir23b is expressed in the pharyngeal arch, otic vesicle, and trunk muscle while mir133b is similarly expressed in head and trunk muscle. Functional analysis by overexpression of mir23b in zebrafish leads to broadening of the ethmoid plate and aberrant cartilage structures in the viscerocranium, while overexpression of mir133b causes a reduction in ethmoid plate size and a significant midfacial cleft. These data illustrate that miRs are expressed in the developing midface and that Mir23b and Mir133b may have roles in this developmental process.
Collapse
Affiliation(s)
- Hai-Lei Ding
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Joan E Hooper
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - Peter Batzel
- Department of Neuroscience, University of Oregon Eugene, OR, USA
| | - B Frank Eames
- Department of Neuroscience, University of OregonEugene, OR, USA; Department of Anatomy and Cell Biology, University of SaskatchewanSaskatoon, SK, Canada
| | | | - Kristin B Artinger
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| | - David E Clouthier
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus Aurora, CO, USA
| |
Collapse
|