1
|
Ebelt ND, Loganathan S, Avsharian LC, Manuel ER. Transcriptomic analysis of non-leukemic cell subsets in azacytidine-responsive AML highlights pathways associated with adhesion, platelet aggregation, and angiogenesis in mice and humans. Mol Med 2025; 31:185. [PMID: 40360989 PMCID: PMC12070539 DOI: 10.1186/s10020-025-01233-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Hypomethylating agents (HMAs), such as 5-azacytidine (AZA), are valuable treatment options for patients with acute myeloid leukemia (AML). Despite providing significant extensions in survival when used alone or in combination with BCL-2 inhibitors, resistance and eventual relapse is observed. Reported mechanisms of these outcomes are inconsistent when focusing on leukemic populations within bone marrow, indicating a need for studies on the impact of HMAs on non-leukemic cells in the blood and other tissue compartments. METHODS Whole blood and spleens from vehicle- or AZA-treated mice implanted with the syngeneic AML line C1498 were transcriptionally profiled using a comprehensive panel of immune-related gene probes. Publicly available RNAseq data from blood of AZA-responsive, human AML patients were analyzed compared to matched, pre-treatment samples. Genes differentially expressed between vehicle- and AZA-treated (mouse) or pre- and post-AZA treatment (human) samples were analyzed for statistical overrepresentation in gene ontologies using Fisher's one-tailed t-test. Pathological analyses of various tissues in AML relapsed, AZA-responsive mice were compared to the corresponding tissues in vehicle-treated mice. RESULTS We observed hematologic recovery in the peripheral blood of AZA-treated groups, versus vehicle control, that was associated with significant extensions in survival. Transcriptional analysis of AZA-treated samples revealed decreased cell type scores for suppressive subsets and increased pathway scores for T and B cell functions. Comparisons of gene ontology annotations enriched from genes differentially regulated by AZA in human and mouse blood samples revealed overlap in numerous biological pathways including adhesion, thrombosis, and angiogenesis. Consistently, C1498 permeated the liver at end-stage disease in vehicle-treated mice, while AZA treatment limited their spread to just outside the bone after relapse. CONCLUSIONS AZA-induced differences in C1498 spread could be a result of gene expression changes in adhesion, platelet aggregation and/or angiogenesis in non-leukemic compartments; however, further mechanistic studies must be done to confirm a direct link between modulated genes and disease manifestation. Overall, these studies provide rationale for expanding the exploration of biomarkers and therapeutic targets to include normal immune cells in blood, spleen, or other microenvironments of AML patients treated with HMA, rather than limiting studies to the bone marrow and leukemic blasts.
Collapse
MESH Headings
- Animals
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Mice
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Gene Expression Profiling
- Transcriptome
- Cell Adhesion/drug effects
- Cell Adhesion/genetics
- Neovascularization, Pathologic/genetics
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- Angiogenesis
Collapse
Affiliation(s)
- Nancy D Ebelt
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | - Lara C Avsharian
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
- Irell and Manella Graduate School of Biological Sciences, City of Hope, Duarte, CA, USA
| | - Edwin R Manuel
- Department of Immuno-Oncology, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Alibrandi S, Rinaldi C, Vinci SL, Conti A, Donato L, Scimone C, Sidoti A, D’Angelo R. Mechanotransduction in Development: A Focus on Angiogenesis. BIOLOGY 2025; 14:346. [PMID: 40282211 PMCID: PMC12024848 DOI: 10.3390/biology14040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Cells respond to external mechanical cues and transduce these forces into biological signals. This process is known as mechanotransduction and requires a group of proteins called mechanosensors. This peculiar class of receptors include extracellular matrix proteins, plasma membrane proteins, the cytoskeleton and the nuclear envelope. These cell components are responsive to a wide spectrum of physical cues including stiffness, tensile force, hydrostatic pressure and shear stress. Among mechanotransducers, the Transient Receptor Potential (TRP) and the PIEZO family members are mechanosensitive ion channels, coupling force transduction with intracellular cation transport. Their activity contributes to embryo development, tissue remodeling and repair, and cell homeostasis. In particular, vessel development is driven by hemodynamic cues such as flow direction and shear stress. Perturbed mechanotransduction is involved in several pathological vascular phenotypes including hereditary hemorrhagic telangiectasia. This review is conceived to summarize the most recent findings of mechanotransduction in development. We first collected main features of mechanosensitive proteins. However, we focused on the role of mechanical cues during development. Mechanosensitive ion channels and their function in vascular development are also discussed, with a focus on brain vessel morphogenesis.
Collapse
Affiliation(s)
- Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Street Michele Miraglia 20, 90139 Palermo, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| | - Sergio Lucio Vinci
- Neuroradiology Unit, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| | - Alfredo Conti
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Street Altura 3, 40123 Bologna, Italy
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), Alma Mater Studiorum—University of Bologna, 40127 Bologna, Italy
| | - Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Street Michele Miraglia 20, 90139 Palermo, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
- Department of Biomolecular Strategies, Genetics, Cutting-Edge Therapies, Istituto Euro-Mediterraneo di Scienza e Tecnologia (I.E.ME.S.T.), Street Michele Miraglia 20, 90139 Palermo, Italy
| | - Rosalia D’Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Street Consolare Valeria 1, 98125 Messina, Italy
| |
Collapse
|
3
|
Feng C, Fan H, Tie R, Xin S, Chen M. Deciphering the evolving niche interactome of human hematopoietic stem cells from ontogeny to aging. Front Mol Biosci 2024; 11:1479605. [PMID: 39698109 PMCID: PMC11652281 DOI: 10.3389/fmolb.2024.1479605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024] Open
Abstract
Hematopoietic stem cells (HSC) reside within specialized microenvironments that undergo dynamic changes throughout development and aging to support HSC function. However, the evolving cell-cell communication networks within these niches remain largely unexplored. This study integrates single-cell RNA sequencing datasets to systematically characterize the HSC niche interactome from ontogeny to aging. We reconstructed single-cell atlases of HSC niches at different developmental stages, revealing stage-specific cellular compositions and interactions targeting HSC. During HSC maturation, our analysis identified distinct patterns of ligand-receptor interactions and signaling pathways that govern HSC emergence, expansion, and maintenance. HSC aging was accompanied by a decrease in supportive niche interactions, followed by an adaptive increase in interaction strength in old adult bone marrow. This complex aging process involved the emergence of interactions associated with inflammation, altered stem cell function, and a decline in the efficacy of key signaling pathways. Our findings provide a comprehensive understanding of the dynamic remodeling of the HSC niche interactome throughout life, paving the way for targeted interventions to maintain HSC function and promote healthy aging. This study offers valuable insights into the intricate cell-cell communication networks that govern HSC behavior and fate, with implications for hematological disorders and regenerative medicine.
Collapse
Affiliation(s)
- Cong Feng
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoyan Fan
- Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, China
| | - Ruxiu Tie
- Bone Marrow Transplantation Center, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hematology-Oncology, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Saige Xin
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Bioinformatics Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Tsilingiris D, Vallianou NG, Spyrou N, Kounatidis D, Christodoulatos GS, Karampela I, Dalamaga M. Obesity and Leukemia: Biological Mechanisms, Perspectives, and Challenges. Curr Obes Rep 2024; 13:1-34. [PMID: 38159164 PMCID: PMC10933194 DOI: 10.1007/s13679-023-00542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW To examine the epidemiological data on obesity and leukemia; evaluate the effect of obesity on leukemia outcomes in childhood acute lymphoblastic leukemia (ALL) survivors; assess the potential mechanisms through which obesity may increase the risk of leukemia; and provide the effects of obesity management on leukemia. Preventive (diet, physical exercise, obesity pharmacotherapy, bariatric surgery) measures, repurposing drugs, candidate therapeutic agents targeting oncogenic pathways of obesity and insulin resistance in leukemia as well as challenges of the COVID-19 pandemic are also discussed. RECENT FINDINGS Obesity has been implicated in the development of 13 cancers, such as breast, endometrial, colon, renal, esophageal cancers, and multiple myeloma. Leukemia is estimated to account for approximately 2.5% and 3.1% of all new cancer incidence and mortality, respectively, while it represents the most frequent cancer in children younger than 5 years. Current evidence indicates that obesity may have an impact on the risk of leukemia. Increased birthweight may be associated with the development of childhood leukemia. Obesity is also associated with worse outcomes and increased mortality in leukemic patients. However, there are several limitations and challenges in meta-analyses and epidemiological studies. In addition, weight gain may occur in a substantial number of childhood ALL survivors while the majority of studies have documented an increased risk of relapse and mortality among patients with childhood ALL and obesity. The main pathophysiological pathways linking obesity to leukemia include bone marrow adipose tissue; hormones such as insulin and the insulin-like growth factor system as well as sex hormones; pro-inflammatory cytokines, such as IL-6 and TNF-α; adipocytokines, such as adiponectin, leptin, resistin, and visfatin; dyslipidemia and lipid signaling; chronic low-grade inflammation and oxidative stress; and other emerging mechanisms. Obesity represents a risk factor for leukemia, being among the only known risk factors that could be prevented or modified through weight loss, healthy diet, and physical exercise. Pharmacological interventions, repurposing drugs used for cardiometabolic comorbidities, and bariatric surgery may be recommended for leukemia and obesity-related cancer prevention.
Collapse
Affiliation(s)
- Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Dragana, 68100, Alexandroupolis, Greece
| | - Natalia G Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou str, 10676, Athens, Greece
| | | | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Str, 12462, Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias str, 11527, Athens, Greece.
| |
Collapse
|
5
|
Luciano M, Krenn PW, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia. Front Immunol 2022; 13:1000996. [PMID: 36248849 PMCID: PMC9554002 DOI: 10.3389/fimmu.2022.1000996] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Acute myeloid leukemia (AML) is a highly heterogeneous malignancy of the blood and bone marrow, characterized by clonal expansion of myeloid stem and progenitor cells and rapid disease progression. Chemotherapy has been the first-line treatment for AML for more than 30 years. Application of recent high-throughput next-generation sequencing technologies has revealed significant molecular heterogeneity to AML, which in turn has motivated efforts to develop new, targeted therapies. However, due to the high complexity of this disease, including multiple driver mutations and the coexistence of multiple competing tumorigenic clones, the successful incorporation of these new agents into clinical practice remains challenging. These continuing difficulties call for the identification of innovative therapeutic approaches that are effective for a larger cohort of AML patients. Recent studies suggest that chronic immune stimulation and aberrant cytokine signaling act as triggers for AML initiation and progression, facets of the disease which might be exploited as promising targets in AML treatment. However, despite the greater appreciation of cytokine profiles in AML, the exact functions of cytokines in AML pathogenesis are not fully understood. Therefore, unravelling the molecular basis of the complex cytokine networks in AML is a prerequisite to develop new therapeutic alternatives based on targeting cytokines and their receptors.
Collapse
Affiliation(s)
- Michela Luciano
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Peter W. Krenn
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|