1
|
Diniz-Filho JF, Silva ACM, Teixeira AL, Sousa BLN, Santos-Oliveira R, Silva GEB, dos Santos CC, Alencar LMR. Penile Cancer: Innovations in Ultrastructural and Vibrational Markers. ACS OMEGA 2025; 10:3449-3461. [PMID: 39926554 PMCID: PMC11800048 DOI: 10.1021/acsomega.4c07293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/11/2025]
Abstract
Penile cancer (PCa) is a disease that manifests predominantly as squamous cell carcinomas (SCCs), which, although rare, represents a significant public health problem, especially in regions with less socioeconomic development. One of the biggest challenges in managing this disease is the difficulty in differentiating tumor subtypes, making accurate diagnosis and treatment challenging. In this context, new characterization techniques are needed to investigate these tumors more completely. Atomic force microscopy (AFM) and Raman spectroscopy (RS) are valuable in this context, providing quantitative and qualitative ultrastructural data and vibrational signatures of the analyzed samples. In this study, AFM and RS techniques were employed to investigate subtypes of penile cancer, including the highly aggressive basaloid subtype, which is closely associated with human papillomavirus (HPV), and the sarcomatoid subtype, comparing them with nontumorous tissues. The AFM results revealed nanoscale changes in the ultrastructural properties of tumor samples, such as increased roughness in tumor tissues, with emphasis on the basaloid type associated with the HPV virus, and reduction in the surface area and volume of tumor tissues at the nanoscale, suggesting deeper tissue infiltration and greater deformability of tumor samples at the nanoscale. RS results detected significant spectral differences between normal and cancerous tissues and between tumor subtypes, particularly in vibrational modes related to proteins and lipids. Principal component analysis (PCA) confirmed a strong discriminative power between control and PCa groups. The data presented here offers new insights into the characteristics of penile tumors that, when integrated with clinical analyses, could improve the understanding of penile cancer behavior, contributing to more accurate diagnostic methods and targeted treatments.
Collapse
Affiliation(s)
- Joel Félix
Silva Diniz-Filho
- Biophysics
and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| | - Ana Caroline Muniz Silva
- Biophysics
and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| | - Antônio
Augusto Lima Teixeira
- Immunofluorescence
and Electron Microscopy Laboratory (LIME/HUUFMA), Department of Medicine, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| | - Bruna Larissa Nolêto Sousa
- Immunofluorescence
and Electron Microscopy Laboratory (LIME/HUUFMA), Department of Medicine, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| | - Ralph Santos-Oliveira
- Brazilian
Nuclear Energy Commission, Institute of
Nuclear Engineering, Laboratory of Nanoradiopharmacy and Synthesis
of New Radiopharmaceuticals, Rio de Janeiro 21941906, Brazil
- State
University of Rio de Janeiro, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro 21941906, Brazil
| | - Gyl Eanes Barros Silva
- Immunofluorescence
and Electron Microscopy Laboratory (LIME/HUUFMA), Department of Medicine, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| | - Clenilton Costa dos Santos
- Biophysics
and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| | - Luciana Magalhães Rebelo Alencar
- Biophysics
and Nanosystems Laboratory, Department of Physics, Federal University of Maranhão, São Luís, Maranhão 65080-805, Brazil
| |
Collapse
|
2
|
Fujiwara H. Dynamic duo: Cell-extracellular matrix interactions in hair follicle development and regeneration. Dev Biol 2024; 516:20-34. [PMID: 39059679 DOI: 10.1016/j.ydbio.2024.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Ectodermal organs, such as hair follicles, originate from simple epithelial and mesenchymal sheets through a complex developmental process driven by interactions between these cell types. This process involves dermal condensation, placode formation, bud morphogenesis, and organogenesis, and all of these processes require intricate interactions among various tissues. Recent research has emphasized the crucial role of reciprocal and dynamic interactions between cells and the extracellular matrix (ECM), referred to as the "dynamic duo", in the development of ectodermal organs. These interactions provide spatially and temporally changing biophysical and biochemical cues within tissues. Using the hair follicle as an example, this review highlights two types of cell-ECM adhesion units-focal adhesion-type and hemidesmosome-type adhesion units-that facilitate communication between epithelial and mesenchymal cells. This review further explores how these adhesion units, along with other cell-ECM interactions, evolve during hair follicle development and regeneration, underscoring their importance in guiding both developmental and regenerative processes.
Collapse
|
3
|
Jiang Y, Perez-Moreno M. Translational frontiers: insight from lymphatics in skin regeneration. Front Physiol 2024; 15:1347558. [PMID: 38487264 PMCID: PMC10937408 DOI: 10.3389/fphys.2024.1347558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The remarkable regenerative ability of the skin, governed by complex molecular mechanisms, offers profound insights into the skin repair processes and the pathogenesis of various dermatological conditions. This understanding, derived from studies in human skin and various model systems, has not only deepened our knowledge of skin regeneration but also facilitated the development of skin substitutes in clinical practice. Recent research highlights the crucial role of lymphatic vessels in skin regeneration. Traditionally associated with fluid dynamics and immune modulation, these vessels are now recognized for interacting with skin stem cells and coordinating regeneration. This Mini Review provides an overview of recent advancements in basic and translational research related to skin regeneration, focusing on the dynamic interplay between lymphatic vessels and skin biology. Key highlights include the critical role of stem cell-lymphatic vessel crosstalk in orchestrating skin regeneration, emerging translational approaches, and their implications for skin diseases. Additionally, the review identifies research gaps and proposes potential future directions, underscoring the significance of this rapidly evolving research arena.
Collapse
Affiliation(s)
| | - Mirna Perez-Moreno
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|