1
|
Malette J, Degrandmaison J, Giguère H, Berthiaume J, Frappier M, Parent JL, Auger-Messier M, Boulay G. MURC/CAVIN-4 facilitates store-operated calcium entry in neonatal cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1249-1259. [PMID: 30951783 DOI: 10.1016/j.bbamcr.2019.03.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 01/29/2023]
Abstract
Intact store-operated calcium entry (SOCE) mechanisms ensure the maintenance of Ca2+ homeostasis in cardiomyocytes while their dysregulation promotes the development of cardiomyopathies. To better understand this calcium handling process in cardiomyocytes, we sought to identify unknown protein partners of stromal interaction molecule 1 (STIM1), a main regulatory protein of SOCE. We identified the muscle-related coiled-coil protein (MURC), also known as Cavin-4, as a candidate and showed that MURC interacts with STIM1 in cardiomyocytes. This interaction occurs via the HR1 and ERM domains of MURC and STIM1, respectively. Our results also demonstrated that the overexpression of MURC in neonatal rat ventricular myocytes (NRVM) is sufficient to potentiate SOCE and that its HR1 domain is required to mediate this effect. Interestingly, the R140W-MURC mutant, a missense variant of the HR1 domain associated with human dilated cardiomyopathy, exacerbates the SOCE increase in NRVM. Although the endogenous expression of STIM1 and Ca2+ channel Orai1 is not modulated under these conditions, we showed that MURC increases the interaction between these proteins under resting conditions. Our study provides novel evidence that MURC regulates SOCE by interacting with STIM1 in cardiomyocytes. In addition, we identified a first potential mechanism by which the R140W mutation of MURC may contribute to calcium mishandling and the development of cardiomyopathies.
Collapse
Affiliation(s)
- Julien Malette
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, QC J1H 5N4, Canada; Département de Médecine - Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jade Degrandmaison
- Département de Médecine - Service de Rhumatologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Hugo Giguère
- Département de Médecine - Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Jonathan Berthiaume
- Département de Médecine - Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Maude Frappier
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, QC J1H 5N4, Canada
| | - Jean-Luc Parent
- Département de Médecine - Service de Rhumatologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Mannix Auger-Messier
- Département de Médecine - Service de Cardiologie, Centre de Recherche du CHUS, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| | - Guylain Boulay
- Département de Pharmacologie et Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, QC J1H 5N4, Canada; Institut de Pharmacologie de Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada.
| |
Collapse
|
2
|
Liu S, Hou H, Zhang P, Wu Y, He X, Li H, Yan N. Sphingomyelin synthase 1 regulates the epithelial‑to‑mesenchymal transition mediated by the TGF‑β/Smad pathway in MDA‑MB‑231 cells. Mol Med Rep 2018; 19:1159-1167. [PMID: 30535436 PMCID: PMC6323219 DOI: 10.3892/mmr.2018.9722] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022] Open
Abstract
Breast cancer is the most common cancer in women and a leading cause of cancer‑associated mortalities in the world. Epithelial‑to‑mesenchymal transition (EMT) serves an important role in the process of metastasis and invasive ability in cancer cells, and transforming growth factor β1 (TGF‑β1) have been investigated for promoting EMT. However, in the present study, the role of the sphingomyelin synthase 1 (SMS1) in TGF‑β1‑induced EMT development was investigated. Firstly, bioinformatics analysis demonstrated that the overexpression of SMS1 negatively regulated the TGFβ receptor I (TβRI) level of expression. Subsequently, the expression of SMS1 was decreased, whereas, SMS2 had no significant difference when MDA‑MB‑231 cells were treated by TGF‑β1 for 72 h. Furthermore, the present study constructed an overexpression cells model of SMS1 and these cells were treated by TGF‑β1. These results demonstrated that overexpression of SMS1 inhibited TGF‑β1‑induced EMT and the migration and invasion of MDA‑MB‑231 cells, increasing the expression of E‑cadherin while decreasing the expression of vimentin. Furthermore, the present study further confirmed that SMS1 overexpression could decrease TβRI expression levels and blocked smad family member 2 phosphorylation. Overall, the present results suggested that SMS1 could inhibit EMT and the migration and invasion of MDA‑MB‑231 cells via TGF‑β/Smad signaling pathway.
Collapse
Affiliation(s)
- Shuang Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Huan Hou
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Panpan Zhang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yifan Wu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Hua Li
- Department of Biochemistry and Molecular Biology, Centre of Experimental Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|