1
|
Liang J, Zhang H, Zeng Z, Lv J, Huang J, Wu X, Wang M, Xu J, Fan J, Chen N. MicroRNA profiling of different exercise interventions for alleviating skeletal muscle atrophy in naturally aging rats. J Cachexia Sarcopenia Muscle 2023; 14:356-368. [PMID: 36457259 PMCID: PMC9891923 DOI: 10.1002/jcsm.13137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Exercise is an affordable and practical strategy to alleviate several detrimental outcomes from the aging process, including sarcopenia. The elucidation of molecular mechanisms to alleviate sarcopenia is one of the most important steps towards understanding human aging. Although microRNAs (miRNAs) regulate muscle growth, regeneration and aging, the potential role of exercise-mediated miRNAs during the prevention and rehabilitation of skeletal muscle atrophy upon exercise interventions remains unclear. METHODS A miRNA profile by miRNA sequencing for gastrocnemius muscle of a 24-month-old aged male rat model mimicking the naturally aging process was established through screening the differentially expressed miRNAs (DEMs) for alleviating aging-induced skeletal muscle atrophy upon optimal exercise intervention. The screened miRNAs and hub genes, as well as biomarkers with the most significantly enriched pathways, were validated by quantitative real-time polymerase chain reaction and western blotting. RESULTS The sarcopenia index (SI) value and cross-sectional area (CSA) of rats from the old control (OC) group significantly decreased when compared with the youth control (YC) group (P < 0.001, P < 0.01), whereas an increased SI value and an enlarged CSA of rats from the old-aerobic exercise (OE), old-resistance exercise (OR) and old-mixed exercise (OM) groups were determined (P < 0.01, P < 0.001, P < 0.05; P < 0.01, P < 0.01, P < 0.05). Our results demonstrate that 764 known miRNAs, 201 novel miRNAs and 505 miRNA-mRNA interaction networks were identified to be related to aging-induced muscular atrophy. Among them, 13 miRNAs were differentially expressed (P < 0.05 and log2 |fold change| > 1) between the YC group and the OC group. Compared with the OC group, 7, 2 and 11 miRNAs were differentially expressed in the OE, OR and OM groups after exercise interventions, respectively. Meanwhile, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the identified DEMs were primarily related to apoptosis, autophagy and the NF-κB/MuRF1 signalling pathways (P < 0.05). Meanwhile, four DEMs (miR-7a-1-3p, miR-135a-5p, miR-151-5p and miR-196b-5p), six hub genes (Ar, Igf1, Hif1a, Bdnf, Fak and Nras) and several biomarkers (LC3, Beclin1, p62, Bax, Bcl-2 and NF-κB/MuRF1) with the most significantly enriched pathways were confirmed, which may play a key role in muscular atrophy during the aging process. CONCLUSIONS These findings are closely correlated with the progression of sarcopenia and could act as potential biomarkers for the diagnosis and interventional monitoring of aging-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Zhengzhong Zeng
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Jun Lv
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Xiaowen Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Jiahao Xu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Jingjing Fan
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| |
Collapse
|
2
|
Muscle Wasting in Chronic Kidney Disease: Mechanism and Clinical Implications—A Narrative Review. Int J Mol Sci 2022; 23:ijms23116047. [PMID: 35682722 PMCID: PMC9181340 DOI: 10.3390/ijms23116047] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
Muscle wasting, known to develop in patients with chronic kidney disease (CKD), is a deleterious consequence of numerous complications associated with deteriorated renal function. Muscle wasting in CKD mainly involves dysregulated muscle protein metabolism and impaired muscle cell regeneration. In this narrative review, we discuss the cardinal role of the insulin-like growth factor 1 and myostatin signaling pathways, which have been extensively investigated using animal and human studies, as well as the emerging concepts in microRNA- and gut microbiota-mediated regulation of muscle mass and myogenesis. To ameliorate muscle loss, therapeutic strategies, including nutritional support, exercise programs, pharmacological interventions, and physical modalities, are being increasingly developed based on advances in understanding its underlying pathophysiology.
Collapse
|
3
|
Long DE, Peck BD, Lavin KM, Dungan CM, Kosmac K, Tuggle SC, Bamman MM, Kern PA, Peterson CA. Skeletal muscle properties show collagen organization and immune cell content are associated with resistance exercise response heterogeneity in older persons. J Appl Physiol (1985) 2022; 132:1432-1447. [PMID: 35482328 DOI: 10.1152/japplphysiol.00025.2022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In older individuals, hypertrophy from progressive resistance training (PRT) is compromised in approximately one- third of participants in exercise trials. The objective of this study was to establish novel relationships between baseline muscle features and/or their PRT-induced change in vastus lateralis muscle biopsies with hypertrophy outcomes. Multiple linear regression analyses adjusted for sex were performed on phenotypic data from older adults (n=48, 70.8±4.5 years) completing 14 weeks of PRT. Results show that baseline muscle size associates with growth regardless of hypertrophy outcome measure (fiber cross-sectional area (fCSA), β=-0.76, Adj. p<0.01; thigh muscle area by CT, β=-0.75, Adj. p<0.01; DXA thigh lean mass, β=-0.47, Adj. p<0.05). Furthermore, loosely packed collagen organization (β=-0.44, Adj. p<0.05) and abundance of CD11b+/CD206- immune cells (β=-0.36, Adj. p=0.10) were negatively associated with whole muscle hypertrophy, with a significant sex interaction on the latter. Additionally, a composite hypertrophy score generated using all three measures reinforces significant fiber level findings that changes in myonuclei (β=0.67, Adj. p<0.01), changes in immune cells (β=0.48, Adj. p<0.05; both CD11b+/CD206+ and CD11b+/CD206- cells), and capillary density (β=0.56, Adj. p<0.01) are significantly associated with growth. Exploratory single cell RNA-sequencing of CD11b+ cells in muscle in response to resistance exercise showed that macrophages have a mixed phenotype. Collagen associations with macrophages may be an important aspect in muscle response heterogeneity. Detailed histological phenotyping of muscle combined with multiple measures of growth response to resistance training in older persons identify potential new mechanisms underlying response heterogeneity and possible sex differences.
Collapse
Affiliation(s)
- Douglas E Long
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Bailey D Peck
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Kaleen M Lavin
- Florida Institute for Human and Machine Cognition, Pensacola, FL, United States
| | - Cory M Dungan
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Kate Kosmac
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| | - Steven Craig Tuggle
- Florida Institute for Human and Machine Cognition, Pensacola, FL, United States.,Center for Exercise Medicine and Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Marcas M Bamman
- Florida Institute for Human and Machine Cognition, Pensacola, FL, United States.,Center for Exercise Medicine and Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Philip A Kern
- Department of Internal Medicine, Division of Endocrinology, and Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
| | - Charlotte A Peterson
- Department of Physical Therapy and Center for Muscle Biology, College of Health Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
4
|
Proshkina E, Yushkova E, Koval L, Zemskaya N, Shchegoleva E, Solovev I, Yakovleva D, Pakshina N, Ulyasheva N, Shaposhnikov M, Moskalev A. Tissue-Specific Knockdown of Genes of the Argonaute Family Modulates Lifespan and Radioresistance in Drosophila Melanogaster. Int J Mol Sci 2021; 22:2396. [PMID: 33673647 PMCID: PMC7957547 DOI: 10.3390/ijms22052396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 11/16/2022] Open
Abstract
Small RNAs are essential to coordinate many cellular processes, including the regulation of gene expression patterns, the prevention of genomic instability, and the suppression of the mutagenic transposon activity. These processes determine the aging, longevity, and sensitivity of cells and an organism to stress factors (particularly, ionizing radiation). The biogenesis and activity of small RNAs are provided by proteins of the Argonaute family. These proteins participate in the processing of small RNA precursors and the formation of an RNA-induced silencing complex. However, the role of Argonaute proteins in regulating lifespan and radioresistance remains poorly explored. We studied the effect of knockdown of Argonaute genes (AGO1, AGO2, AGO3, piwi) in various tissues on the Drosophila melanogaster lifespan and survival after the γ-irradiation at a dose of 700 Gy. In most cases, these parameters are reduced or did not change significantly in flies with tissue-specific RNA interference. Surprisingly, piwi knockdown in both the fat body and the nervous system causes a lifespan increase. But changes in radioresistance depend on the tissue in which the gene was knocked out. In addition, analysis of changes in retrotransposon levels and expression of stress response genes allow us to determine associated molecular mechanisms.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Elena Yushkova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Nadezhda Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Evgeniya Shchegoleva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Ilya Solovev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
- Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Daria Yakovleva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
- Institute of Natural Sciences, Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky Prosp., 167001 Syktyvkar, Russia
| | - Natalya Pakshina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Natalia Ulyasheva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya St., 167982 Syktyvkar, Russia; (E.P.); (E.Y.); (L.K.); (N.Z.); (E.S.); (I.S.); (D.Y.); (N.P.); (N.U.); (M.S.)
- Laboratory of Post-Genomic Research, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov St., 119991 Moscow, Russia
| |
Collapse
|
5
|
Yu J, Liao X, Zhong Y, Wu Y, Lai X, Jiao H, Yan M, Zhang Y, Ma C, Wang S. The Candidate Schizophrenia Risk Gene Tmem108 Regulates Glucose Metabolism Homeostasis. Front Endocrinol (Lausanne) 2021; 12:770145. [PMID: 34690937 PMCID: PMC8531597 DOI: 10.3389/fendo.2021.770145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/23/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Schizophrenia (SCZ) is a severe psychiatric disease affected by genetic factors and environmental contributors, and premorbid abnormality of glucose metabolism is one of the SCZ characteristics supposed to contribute to the disease's pathological process. Transmembrane protein 108 (Tmem108) is a susceptible gene associated with multiple psychiatric diseases, including SCZ. Moreover, Tmem108 mutant mice exhibit SCZ-like behaviors in the measurement of sensorimotor gating. However, it is unknown whether Tmem108 regulates glucose metabolism homeostasis while it involves SCZ pathophysiological process. RESULTS In this research, we found that Tmem108 mutant mice exhibited glucose intolerance, insulin resistance, and disturbed metabolic homeostasis. Food and oxygen consumption decreased, and urine production increased, accompanied by weak fatigue resistance in the mutant mice. Simultaneously, the glucose metabolic pathway was enhanced, and lipid metabolism decreased in the mutant mice, consistent with the elevated respiratory exchange ratio (RER). Furthermore, metformin attenuated plasma glucose levels and improved sensorimotor gating in Tmem108 mutant mice. CONCLUSIONS Hyperglycemia occurs more often in SCZ patients than in control, implying that these two diseases share common biological mechanisms, here we demonstrate that the Tmem108 mutant may represent such a comorbid mechanism.
Collapse
Affiliation(s)
- Jianbo Yu
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
| | - Xufeng Liao
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
| | - Yanzi Zhong
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
- Department of Biology, Senior Middle School of Yongfeng, Ji’an, China
| | - Yongqiang Wu
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
| | - Xinsheng Lai
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Huifeng Jiao
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Min Yan
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
| | - Yu Zhang
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
| | - Chaolin Ma
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- *Correspondence: Chaolin Ma, ; Shunqi Wang,
| | - Shunqi Wang
- Laboratory of Synaptic Development and Plasticity, Institute of Life Science & School of Life Sciences, Nanchang University, Nanchang, China
- School of Basic Medical Sciences, Nanchang University, Nanchang, China
- *Correspondence: Chaolin Ma, ; Shunqi Wang,
| |
Collapse
|
6
|
Tsuji J, Thomson T, Chan E, Brown CK, Oppenheimer J, Bigelow C, Dong X, Theurkauf WE, Weng Z, Schwartz LM. High-resolution analysis of differential gene expression during skeletal muscle atrophy and programmed cell death. Physiol Genomics 2020; 52:492-511. [PMID: 32926651 DOI: 10.1152/physiolgenomics.00047.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Skeletal muscles can undergo atrophy and/or programmed cell death (PCD) during development or in response to a wide range of insults, including immobility, cachexia, and spinal cord injury. However, the protracted nature of atrophy and the presence of multiple cell types within the tissue complicate molecular analyses. One model that does not suffer from these limitations is the intersegmental muscle (ISM) of the tobacco hawkmoth Manduca sexta. Three days before the adult eclosion (emergence) at the end of metamorphosis, the ISMs initiate a nonpathological program of atrophy that results in a 40% loss of mass. The ISMs then generate the eclosion behavior and initiate a nonapoptotic PCD during the next 30 h. We have performed a comprehensive transcriptomics analysis of all mRNAs and microRNAs throughout ISM development to better understand the molecular mechanisms that mediate atrophy and death. Atrophy involves enhanced protein catabolism and reduced expression of the genes involved in respiration, adhesion, and the contractile apparatus. In contrast, PCD involves the induction of numerous proteases, DNA methylases, membrane transporters, ribosomes, and anaerobic metabolism. These changes in gene expression are largely repressed when insects are injected with the insect steroid hormone 20-hydroxyecdysone, which delays death. The expression of the death-associated proteins may be greatly enhanced by reductions in specific microRNAs that function to repress translation. This study not only provides fundamental new insights into basic developmental processes, it may also represent a powerful resource for identifying potential diagnostic markers and molecular targets for therapeutic intervention.
Collapse
Affiliation(s)
- Junko Tsuji
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Travis Thomson
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Elizabeth Chan
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts
| | - Christine K Brown
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts
| | | | - Carol Bigelow
- Department of Biostatistics and Epidemiology, University of Massachusetts, Amherst, Massachusetts
| | - Xianjun Dong
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Lawrence M Schwartz
- Department of Biology, Morrill Science Center, University of Massachusetts, Amherst, Massachusetts
| |
Collapse
|
7
|
Yan Y, Zhang K, Zhou G, Hu W. MicroRNAs Responding to Space Radiation. Int J Mol Sci 2020; 21:ijms21186603. [PMID: 32917057 PMCID: PMC7555309 DOI: 10.3390/ijms21186603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022] Open
Abstract
High-energy and high-atom-number (HZE) space radiation poses an inevitable potential threat to astronauts on deep space exploration missions. Compared with low-LET radiation, high-energy and high-LET radiation in space is more efficient in inducing clustered DNA damage with more serious biological consequences, such as carcinogenesis, central nervous system injury and degenerative disease. Space radiation also causes epigenetic changes in addition to inducing damage at the DNA level. Considering the important roles of microRNAs in the regulation of biological responses of radiation, we systematically reviewed both expression profiling and functional studies relating to microRNAs responding to space radiation as well as to space compound environment. Finally, the directions for improvement of the research related to microRNAs responding to space radiation are proposed. A better understanding of the functions and underlying mechanisms of the microRNAs responding to space radiation is of significance to both space radiation risk assessment and therapy development for lesions caused by space radiation.
Collapse
Affiliation(s)
| | | | - Guangming Zhou
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| | - Wentao Hu
- Correspondence: (G.Z.); (W.H.); Tel.: +86-512-65884829 (G.Z.); +86-512-65882451 (W.H.)
| |
Collapse
|
8
|
Shorter E, Sannicandro AJ, Poulet B, Goljanek-Whysall K. Skeletal Muscle Wasting and Its Relationship With Osteoarthritis: a Mini-Review of Mechanisms and Current Interventions. Curr Rheumatol Rep 2019; 21:40. [PMID: 31203463 PMCID: PMC6571089 DOI: 10.1007/s11926-019-0839-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Osteoarthritis (OA) is a subset of joint disorders resulting in degeneration of synovial joints. This leads to pain, disability and loss of independence. Knee and hip OA are extremely prevalent, and their occurrence increases with ageing. Similarly, loss of muscle mass and function, sarcopenia, occurs during ageing. RECENT FINDINGS Little is known about the impact of muscle wasting on OA progression; nevertheless, it has been suggested that muscle wasting directly affects the stability of the joints and loss of mobility leads to gradual degeneration of articular cartilage. The molecular mechanisms underlying muscle wasting in OA are not well understood; however, these are probably related to changes in gene expression, as well as epigenetic modifications. It is becoming clear that skeletal muscle wasting plays an important role in OA development and/or progression. Here, we discuss mechanisms, current interventions, such as exercise, and potentially novel approaches, such as modulation of microRNAs, aiming at ameliorating OA symptoms through maintaining muscle mass and function.
Collapse
Affiliation(s)
- Emily Shorter
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX UK
| | - Anthony J Sannicandro
- Department of Physiology, School of Medicine, REMEDI, NUI Galway, Human Biology Building, University Road, Galway, Ireland
| | - Blandine Poulet
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX UK
| | - Katarzyna Goljanek-Whysall
- Institute of Ageing and Chronic Disease, University of Liverpool, William Henry Duncan Building, West Derby Road, Liverpool, L7 8TX UK
- Department of Physiology, School of Medicine, REMEDI, NUI Galway, Human Biology Building, University Road, Galway, Ireland
| |
Collapse
|
9
|
Wang Y, Ma J, Qiu W, Zhang J, Feng S, Zhou X, Wang X, Jin L, Long K, Liu L, Xiao W, Tang Q, Zhu L, Jiang Y, Li X, Li M. Guanidinoacetic Acid Regulates Myogenic Differentiation and Muscle Growth Through miR-133a-3p and miR-1a-3p Co-mediated Akt/mTOR/S6K Signaling Pathway. Int J Mol Sci 2018; 19:ijms19092837. [PMID: 30235878 PMCID: PMC6163908 DOI: 10.3390/ijms19092837] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 12/12/2022] Open
Abstract
Guanidinoacetic acid (GAA), an amino acid derivative that is endogenous to animal tissues including muscle and nerve, has been reported to enhance muscular performance. MicroRNA (miRNA) is a post-transcriptional regulator that plays a key role in nutrient-mediated myogenesis. However, the effects of GAA on myogenic differentiation and skeletal muscle growth, and the potential regulatory mechanisms of miRNA in these processes have not been elucidated. In this study, we investigated the effects of GAA on proliferation, differentiation, and growth in C2C12 cells and mice. The results showed that GAA markedly inhibited the proliferation of myoblasts, along with the down-regulation of cyclin D1 (CCND1) and cyclin dependent kinase 4 (CDK4) mRNA expression, and the upregulation of cyclin dependent kinase inhibitor 1A (P21) mRNA expression. We also demonstrated that GAA treatment stimulated myogenic differentiation 1 (MyoD) and myogenin (MyoG) mRNA expression, resulting in an increase in the myotube fusion rate. Meanwhile, GAA supplementation promoted myotube growth through increase in total myosin heavy chain (MyHC) protein level, myotubes thickness and gastrocnemius muscle cross-sectional area. Furthermore, small RNA sequencing revealed that a total of eight miRNAs, including miR-133a-3p and miR-1a-3p cluster, showed differential expression after GAA supplementation. To further study the function of miR-133a-3p and miR-1a-3p in GAA-induced skeletal muscle growth, we transfected miR-133a-3p and miR-1a-3p mimics into myotube, which also induced muscle growth. Through bioinformatics and a dual-luciferase reporter system, the target genes of miR-133a-3p and miR-1a-3p were determined. These two miRNAs were shown to modulate the Akt/mTOR/S6K signaling pathway by restraining target gene expression. Taken together, these findings suggest that GAA supplementation can promote myoblast differentiation and skeletal muscle growth through miR-133a-3p- and miR-1a-3p-induced activation of the AKT/mTOR/S6K signaling pathway.
Collapse
Affiliation(s)
- Yujie Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Jideng Ma
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Wanling Qiu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Jinwei Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Siyuan Feng
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Xiankun Zhou
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Xun Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Long Jin
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Keren Long
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Lingyan Liu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Weihang Xiao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Qianzi Tang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Yanzhi Jiang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Xuewei Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| | - Mingzhou Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
10
|
Koltai E, Bori Z, Osvath P, Ihasz F, Peter S, Toth G, Degens H, Rittweger J, Boldogh I, Radak Z. Master athletes have higher miR-7, SIRT3 and SOD2 expression in skeletal muscle than age-matched sedentary controls. Redox Biol 2018; 19:46-51. [PMID: 30107294 PMCID: PMC6092475 DOI: 10.1016/j.redox.2018.07.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022] Open
Abstract
Regular physical exercise has health benefits and can prevent some of the ageing-associated muscle deteriorations. However, the biochemical mechanisms underlying this exercise benefit, especially in human tissues, are not well known. To investigate, we assessed this using miRNA profiling, mRNA and protein levels of anti-oxidant and metabolic proteins in the vastus lateralis muscle of master athletes aged over 65 years and age-matched controls. Master athletes had lower levels of miR-7, while mRNA or protein levels of SIRT3, SIRT1, SOD2, and FOXO1 levels were significantly higher in the vastus lateralis muscle of master athletes compared to muscles of age-matched controls. These results suggest that regular exercise results in better cellular metabolism and antioxidant capacity via maintaining physiological state of mitochondria and efficient ATP production and decreasing ageing-related inflammation as indicated by the lower level of miR-7 in master athletes.
Collapse
Affiliation(s)
- Erika Koltai
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Zoltan Bori
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary
| | - Peter Osvath
- Department of Health Sciences and Sports Medicine, University of Physical Education, Budapest, Hungary
| | - Ferenc Ihasz
- Hungary Institute of Sport Science, Faculty of Education and Psychology, Eotvos University, Szombathely, Hungary
| | - Szablics Peter
- Institute of Physical Education and Sport Science, JGYPK, University of Szeged, Szeged, Hungary
| | - Geza Toth
- Affidea Diagnostic Center, Budapest, Hungary
| | - Hans Degens
- School of Healthcare Science, Manchester Metropolitan University, UK; Institute of Sport Science and Innovations, Lithuanian Sports University, Lithuania
| | - Jörn Rittweger
- Division Space Physiology, Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
| | - Istvan Boldogh
- University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Zsolt Radak
- Research Institute of Sport Science, University of Physical Education, Budapest, Hungary.
| |
Collapse
|