1
|
Eid SA, Townsend KL, Spallone V, Menichella DM, Koubek EJ, Feldman EL. A call to action for peripheral neuropathy research funding-Time to consolidate funding under one NIH initiative? J Peripher Nerv Syst 2025; 30:e12681. [PMID: 39801027 PMCID: PMC11725771 DOI: 10.1111/jns.12681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/11/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025]
Affiliation(s)
- Stéphanie A. Eid
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Kristy L. Townsend
- Department of Neurological SurgeryThe Ohio State UniversityColumbusOhioUSA
| | - Vincenza Spallone
- Department of Systems Medicine, Endocrinology SectionUniversity of Rome Tor VergataRomeItaly
| | - Daniela M. Menichella
- Department of NeurologyFeinberg School of MedicineChicagoIllinoisUSA
- Department of PharmacologyFeinberg School of MedicineChicagoIllinoisUSA
| | - Emily J. Koubek
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
2
|
Pacifico P, Menichella DM. Molecular mechanisms of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:279-309. [PMID: 39580215 DOI: 10.1016/bs.irn.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Peripheral neuropathic pain, which occurs after a lesion or disease affecting the peripheral somatosensory nervous system, is a complex and challenging condition to treat. This chapter will cover molecular mechanisms underlying the pathophysiology of peripheral neuropathic pain, focusing on (1) sensitization of nociceptors, (2) neuro-immune crosstalk, and (3) axonal degeneration and regeneration. The chapter will also emphasize the importance of identifying novel therapeutic targets in non-neuronal cells. A comprehensive understanding of how changes at both neuronal and non-neuronal levels contribute to peripheral neuropathic pain may significantly improve pain management and treatment options, expanding to topical application that bypass the side effects associated with systemic administration.
Collapse
Affiliation(s)
- Paola Pacifico
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| | - Daniela M Menichella
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.
| |
Collapse
|
3
|
Li K, Alhaskawi A, Zhou H, Dong Y, Zhao Q, Wang C, Lu H. Risk Factors and Electromyographic Characteristics of Acquired Weakness in Critically Ill Patients: A Retrospective Study. Ther Clin Risk Manag 2024; 20:451-463. [PMID: 39104821 PMCID: PMC11299719 DOI: 10.2147/tcrm.s464722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
Objective This retrospective study examines risk factors and electromyographic (EMG) characteristics associated with acquired weakness in critically ill patients and assesses their impact on patient prognosis. Methods Ninety-seven critically ill patients, ventilated for over 48 hours, were included. Patient data, encompassing general condition, medical history, Medical Research Council (MRC) scores, serum markers (c-reactive protein, calcitonin gene, albumin, brain natriuretic peptide, urea nitrogen, creatinine), EMG characteristics, respiratory treatment modalities, and parameters, were recorded. Mechanical ventilation duration, ICU stay duration, hospitalization duration, and patient prognosis were documented. Based on MRC scores, patients were categorized into the ICU-acquired weakness (ICU-AW) group (MRC <48 points) and the non-ICU-AW group (MRC ≥48 points). Results The study comprised 47 ICU-AW and 50 non-ICU-AW patients. Significant differences (p <0.05) were observed in age, MRC scores, albumin levels, c-reactive protein, calcitonin gene, brain natriuretic peptide, urea nitrogen, creatinine, mechanical ventilation duration, ICU stay duration, and hospitalization duration between groups. In the ICU-AW group, nerve conduction examinations revealed slow conduction velocity, reduced wave amplitude, and in severe cases, a complete loss of motor and sensory potentials. Multivariate logistic analysis identified low serum albumin levels and MRC scores as potential ICU-AW risk factors. Conclusion This study suggests that low serum albumin levels and MRC scores may contribute to ICU-AW risk. The ICU-AW group exhibited varied peripheral nerve damage and slow conduction velocities on EMG. Additionally, severe systemic inflammatory responses, renal function, brain natriuretic peptide levels, prolonged mechanical ventilation, and peripheral nerve damage may be associated with ICU-AW. Follow-up studies are essential for further understanding these complex interactions.
Collapse
Affiliation(s)
- Kun Li
- Department of Critical Care Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ahmad Alhaskawi
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Haiyin Zhou
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Yanzhao Dong
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - QingFang Zhao
- Department of Plastic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Chenxi Wang
- Medical Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Hui Lu
- Department of Orthopaedics, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
4
|
Ye C, Fu Y, Zhou X, Zhou F, Zhu X, Chen Y. Identification and validation of NAD+ metabolism-related biomarkers in patients with diabetic peripheral neuropathy. Front Endocrinol (Lausanne) 2024; 15:1309917. [PMID: 38464965 PMCID: PMC10920259 DOI: 10.3389/fendo.2024.1309917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Background The mechanism of Nicotinamide Adenine Dinucleotide (NAD+) metabolism-related genes (NMRGs) in diabetic peripheral neuropathy (DPN) is unclear. This study aimed to find new NMRGs biomarkers in DPN. Methods DPN related datasets GSE95849 and GSE185011 were acquired from the Gene Expression Omnibus (GEO) database. 51 NMRGs were collected from a previous article. To explore NMRGs expression in DPN and control samples, differential expression analysis was completed in GSE95849 to obtain differentially expressed genes (DEGs), and the intersection of DEGs and NMRGs was regarded as DE-NMRGs. Next, a protein-protein interaction (PPI) network based on DE-NMRGs was constructed and biomarkers were screened by eight algorithms. Additionally, Gene Set Enrichment Analysis (GSEA) enrichment analysis was completed, biomarker-based column line graphs were constructed, lncRNA-miRNA-mRNA and competing endogenouse (ce) RNA networks were constructed, and drug prediction was completed. Finally, biomarkers expression validation was completed in GSE95849 and GSE185011. Results 5217 DEGs were obtained from GSE95849 and 21 overlapping genes of DEGs and NMRGs were DE-NMRGs. Functional enrichment analysis revealed that DE-NMRGs were associated with glycosyl compound metabolic process. The PPI network contained 93 protein-interaction pairs and 21 nodes, with strong interactions between NMNAT1 and NAMPT, NADK and NMNAT3, ENPP3 and NUDT12 as biomarkers based on 8 algorithms. Expression validation suggested that ENPP3 and NUDT12 were upregulated in DPN samples (P < 0.05). Moreover, an alignment diagram with good diagnostic efficacy based on ENPP3 and NUDT12 were identified was constructed. GSEA suggested that ENPP3 was enriched in Toll like receptor (TLR) pathway, NUDT12 was enriched in maturity onset diabetes of the young and insulin pathway. Furthermore, 18 potential miRNAs and 36 Transcription factors (TFs) were predicted and the miRNA-mRNA-TF networks were constructed, suggesting that ENPP3 might regulate hsa-miR-34a-5p by affecting MYNN. The ceRNA network suggested that XLOC_013024 might regulate hsa-let-7b-5p by affecting NUDT12. 15 drugs were predicted, with 8 drugs affecting NUDT12 such as resveratrol, and 13 drugs affecting ENPP3 such as troglitazone. Conclusion ENPP3 and NUDT12 might play key roles in DPN, which provides reference for further research on DPN.
Collapse
Affiliation(s)
| | | | | | | | | | - Yiheng Chen
- Department of Hand and Microsurgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
5
|
Yeung AM, Huang J, Nguyen KT, Xu NY, Hughes LT, Agrawal BK, Ejskjaer N, Klonoff DC. Painful Diabetic Neuropathy: The Need for New Approaches. J Diabetes Sci Technol 2024; 18:159-167. [PMID: 36305521 PMCID: PMC10899841 DOI: 10.1177/19322968221132252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Painful diabetic neuropathy is a common vexing problem for people with diabetes and a costly problem for society. The pathophysiology is not well understood, and no safe and effective mechanistically-based treatment has been identified. Poor glycemic control is a risk factor for painful diabetic neuropathy. Excessive intraneuronal glucose in people with diabetes can be shunted away from physiological glycolysis into multiple pathological pathways associated with neuropathy and pain. The first three treatments that are traditionally offered consist of risk factor reduction, lifestyle modifications, and pharmacological therapy, which includes only three drugs that are approved for this indication by the United States Food and Drug Administration. All of these traditional treatments are often inadequate for relieving neuropathic pain, and thus, new approaches are needed. Modern devices based on neuromodulation technology, which act directly on the nervous system, have been recently cleared by the United States Food and Drug Administration for painful diabetic neuropathy and offer promise as next-in-line therapy when traditional therapies fail.
Collapse
Affiliation(s)
| | | | | | - Nicole Y. Xu
- Diabetes Technology Society, Burlingame, CA, USA
| | - Lorenzo T. Hughes
- Balance Health, San Francisco, CA, USA
- Mills-Peninsula Medical Center, Burlingame, CA, USA
| | | | - Niels Ejskjaer
- Steno Diabetes Center North Denmark and Department of Endocrinology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - David C. Klonoff
- Diabetes Technology Society, Burlingame, CA, USA
- Diabetes Research Institute, Mills-Peninsula Medical Center, San Mateo, CA, USA
| |
Collapse
|
6
|
Wong YC, Jayaraj ND, Belton TB, Shum GC, Ball HE, Ren D, Tadenev ALD, Krainc D, Burgess RW, Menichella DM. Misregulation of mitochondria-lysosome contact dynamics in Charcot-Marie-Tooth Type 2B disease Rab7 mutant sensory peripheral neurons. Proc Natl Acad Sci U S A 2023; 120:e2313010120. [PMID: 37878717 PMCID: PMC10622892 DOI: 10.1073/pnas.2313010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023] Open
Abstract
Inter-organelle contact sites between mitochondria and lysosomes mediate the crosstalk and bidirectional regulation of their dynamics in health and disease. However, mitochondria-lysosome contact sites and their misregulation have not been investigated in peripheral sensory neurons. Charcot-Marie-Tooth type 2B disease is an autosomal dominant axonal neuropathy affecting peripheral sensory neurons caused by mutations in the GTPase Rab7. Using live super-resolution and confocal time-lapse microscopy, we showed that mitochondria-lysosome contact sites dynamically form in the soma and axons of peripheral sensory neurons. Interestingly, Charcot-Marie-Tooth type 2B mutant Rab7 led to prolonged mitochondria-lysosome contact site tethering preferentially in the axons of peripheral sensory neurons, due to impaired Rab7 GTP hydrolysis-mediated contact site untethering. We further generated a Charcot-Marie-Tooth type 2B mutant Rab7 knock-in mouse model which exhibited prolonged axonal mitochondria-lysosome contact site tethering and defective downstream axonal mitochondrial dynamics due to impaired Rab7 GTP hydrolysis as well as fragmented mitochondria in the axon of the sciatic nerve. Importantly, mutant Rab7 mice further demonstrated preferential sensory behavioral abnormalities and neuropathy, highlighting an important role for mutant Rab7 in driving degeneration of peripheral sensory neurons. Together, this study identifies an important role for mitochondria-lysosome contact sites in the pathogenesis of peripheral neuropathy.
Collapse
Affiliation(s)
- Yvette C. Wong
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Nirupa D. Jayaraj
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Tayler B. Belton
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - George C. Shum
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Hannah E. Ball
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | - Dongjun Ren
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | | | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Simpson Querrey Center for Neurogenetics, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| | | | - Daniela M. Menichella
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL60611
| |
Collapse
|
7
|
Eid SA, Rumora AE, Beirowski B, Bennett DL, Hur J, Savelieff MG, Feldman EL. New perspectives in diabetic neuropathy. Neuron 2023; 111:2623-2641. [PMID: 37263266 PMCID: PMC10525009 DOI: 10.1016/j.neuron.2023.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 06/03/2023]
Abstract
Diabetes prevalence continues to climb with the aging population. Type 2 diabetes (T2D), which constitutes most cases, is metabolically acquired. Diabetic peripheral neuropathy (DPN), the most common microvascular complication, is length-dependent damage to peripheral nerves. DPN pathogenesis is complex, but, at its core, it can be viewed as a state of impaired metabolism and bioenergetics failure operating against the backdrop of long peripheral nerve axons supported by glia. This unique peripheral nerve anatomy and the injury consequent to T2D underpins the distal-to-proximal symptomatology of DPN. Earlier work focused on the impact of hyperglycemia on nerve damage and bioenergetics failure, but recent evidence additionally implicates contributions from obesity and dyslipidemia. This review will cover peripheral nerve anatomy, bioenergetics, and glia-axon interactions, building the framework for understanding how hyperglycemia and dyslipidemia induce bioenergetics failure in DPN. DPN and painful DPN still lack disease-modifying therapies, and research on novel mechanism-based approaches is also covered.
Collapse
Affiliation(s)
- Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy E Rumora
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Bogdan Beirowski
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; Neuroscience Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford OX3 9DU, UK
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Masha G Savelieff
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA; NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Schleicher E, Didangelos T, Kotzakioulafi E, Cegan A, Peter A, Kantartzis K. Clinical Pathobiochemistry of Vitamin B 12 Deficiency: Improving Our Understanding by Exploring Novel Mechanisms with a Focus on Diabetic Neuropathy. Nutrients 2023; 15:nu15112597. [PMID: 37299560 DOI: 10.3390/nu15112597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/27/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Vitamin B12 (B12) is an essential cofactor of two important biochemical pathways, the degradation of methylmalonic acid and the synthesis of methionine from homocysteine. Methionine is an important donor of methyl groups for numerous biochemical reactions, including DNA synthesis and gene regulation. Besides hematological abnormalities (megaloblastic anemia or even pancytopenia), a deficiency in B12 may cause neurological symptoms, including symptoms resembling diabetic neuropathy. Although extensively studied, the underlining molecular mechanism for the development of diabetic peripheral neuropathy (DPN) is still unclear. Most studies have found a contribution of oxidative stress in the development of DPN. Detailed immunohistochemical investigations in sural nerve biopsies obtained from diabetic patients with DPN point to an activation of inflammatory pathways induced via elevated advanced glycation end products (AGE), ultimately resulting in increased oxidative stress. Similar results have been found in patients with B12 deficiency, indicating that the observed neural changes in patients with DPN might be caused by cellular B12 deficiency. Since novel results show that B12 exerts intrinsic antioxidative activity in vitro and in vivo, B12 may act as an intracellular, particularly as an intramitochondrial, antioxidant, independent from its classical, well-known cofactor function. These novel findings may provide a rationale for the use of B12 for the treatment of DPN, even in subclinical early states.
Collapse
Affiliation(s)
- Erwin Schleicher
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Triantafyllos Didangelos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, "AHEPA" Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Evangelia Kotzakioulafi
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Medical School, "AHEPA" Hospital, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece
| | - Alexander Cegan
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice, Czech Republic
| | - Andreas Peter
- Institute for Clinical Chemistry and Pathobiochemistry, Department for Diagnostic Laboratory Medicine, University Hospital of Tübingen, 72076 Tübingen, Germany
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
| | - Konstantinos Kantartzis
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich, German Center for Diabetes Research (DZD), 72076 Tübingen, Germany
- German Center for Diabetes Research (DZD e.V.), 85764 Neuherberg, Germany
- Department of Internal Medicine IV, Division of Endocrinology, Diabetology and Nephrology, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
9
|
Hicks CW, Wang D, Lin FR, Reed N, Windham BG, Selvin E. Peripheral Neuropathy and Vision and Hearing Impairment in US Adults With and Without Diabetes. Am J Epidemiol 2023; 192:237-245. [PMID: 36345076 PMCID: PMC10308505 DOI: 10.1093/aje/kwac195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/08/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022] Open
Abstract
We aimed to assess the associations of peripheral neuropathy (PN) with vision and hearing impairment among adults aged ≥40 years who attended the lower-extremity disease exam for the National Health and Nutrition Examination Survey (United States, 1999-2004). Overall, 11.8% (standard error (SE), 0.5) of adults had diabetes, 13.2% (SE, 0.5) had PN (26.6% (SE, 1.4) with diabetes, 11.4% (SE, 0.5) without diabetes), 1.6% (SE, 0.1) had vision impairment, and 15.4% (SE, 1.1) had hearing impairment. The prevalence of vision impairment was 3.89% (95% CI: 2.99, 5.05) among adults with PN and 1.29% (95% CI: 1.04, 1.60) among adults without PN (P < 0.001). After adjustment, PN was associated with vision impairment overall (odds ratio (OR) = 1.48, 95% confidence interval (CI): 1.03, 2.13) and among adults without diabetes (OR = 1.80, 95% CI: 1.17, 2.77) but not among adults with diabetes (P for interaction = 0.018). The prevalence of hearing impairment was 26.5% (95% CI: 20.4, 33.7) among adults with PN and 14.2% (95% CI: 12.4, 16.3) among adults without PN (P < 0.001). The association of PN with moderate/severe hearing impairment was significant overall (OR = 2.55, 95% CI: 1.40, 4.64) and among adults without diabetes (OR = 3.26, 95% CI: 1.80, 5.91). Overall, these findings suggest an association between peripheral and audiovisual sensory impairment that is unrelated to diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | - Elizabeth Selvin
- Correspondence to Dr. Elizabeth Selvin, Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, 2024 E. Monument Street, Suite 2-600, Baltimore, MD 21287 (e-mail: )
| |
Collapse
|
10
|
Canta A, Carozzi VA, Chiorazzi A, Meregalli C, Oggioni N, Rodriguez-Menendez V, Sala B, Melcangi RC, Giatti S, Lombardi R, Bianchi R, Marmiroli P, Cavaletti G. Multimodal Comparison of Diabetic Neuropathy in Aged Streptozotocin-Treated Sprague-Dawley and Zucker Diabetic Fatty Rats. Biomedicines 2022; 11:20. [PMID: 36672528 PMCID: PMC9855818 DOI: 10.3390/biomedicines11010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/02/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The development and progression of diabetic polyneuropathy (DPN) are due to multiple mechanisms. The creation of reliable animal models of DPN has been challenging and this issue has not yet been solved. However, despite some recognized differences from humans, most of the current knowledge on the pathogenesis of DPN relies on results achieved using rodent animal models. The simplest experimental DPN model reproduces type 1 diabetes, induced by massive chemical destruction of pancreatic beta cells with streptozotocin (STZ). Spontaneous/transgenic models of diabetes are less frequently used, mostly because they are less predictable in clinical course, more expensive, and require a variable time to achieve homogeneous metabolic conditions. Among them, Zucker diabetic fatty (ZDF) rats represent a typical type 2 diabetes model. Both STZ-induced and ZDF rats have been extensively used, but only very few studies have compared the long-term similarities and differences existing between these two models. Moreover, inconsistencies have been reported regarding several aspects of short-term in vivo studies using these models. In this study, we compared the long-term course of DPN in STZ-treated Sprague-Dawley and ZDF rats with a multimodal set of readout measures.
Collapse
Affiliation(s)
- Annalisa Canta
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Valentina A. Carozzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Alessia Chiorazzi
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Cristina Meregalli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Norberto Oggioni
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Virginia Rodriguez-Menendez
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Barbara Sala
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Roberto Cosimo Melcangi
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20100 Milano, Italy
| | - Silvia Giatti
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20100 Milano, Italy
| | - Raffaella Lombardi
- Neuroalgology Unit, IRCCS Fondazione Istituto Neurologico “Carlo Besta”, 20100 Milano, Italy
| | - Roberto Bianchi
- Neuroalgology Unit, IRCCS Fondazione Istituto Neurologico “Carlo Besta”, 20100 Milano, Italy
| | - Paola Marmiroli
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
11
|
Ang L, Mizokami-Stout K, Eid SA, Elafros M, Callaghan B, Feldman EL, Pop-Busui R. The conundrum of diabetic neuropathies-Past, present, and future. J Diabetes Complications 2022; 36:108334. [PMID: 36306721 PMCID: PMC10202025 DOI: 10.1016/j.jdiacomp.2022.108334] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/01/2022] [Accepted: 10/01/2022] [Indexed: 10/31/2022]
Abstract
Diabetic neuropathy (DN) remains arguably the most prevalent chronic complication in people with both type 1 and type 2 diabetes, including in youth, despite changes in the current standards of clinical care. Additionally, emerging evidence demonstrates that neuropathy affects a large proportion of people with undiagnosed diabetes and/or prediabetes, as well as those with obesity. Here we summarize the latest epidemiology of DN, recent findings regarding the pathophysiology of the disease, as well as current outcome measures for screening and diagnosis, in research and clinical settings. The authors discuss novel perspectives on the impact of social determinants of health in DN development and management, and the latest evidence on effective therapies, including pharmacological and nonpharmacological therapies for neuropathic pain. Throughout the publication, we identify knowledge gaps and the need for future funding to address these gaps, as well as needs to advocate for a personalized care approach to reduce the burden of DN and optimize quality of life for all affected individuals.
Collapse
Affiliation(s)
- Lynn Ang
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America
| | - Kara Mizokami-Stout
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America; Ann Arbor Veteran Affairs Hospital, Ann Arbor, MI, United States of America
| | - Stephanie A Eid
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Melissa Elafros
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Brian Callaghan
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States of America
| | - Rodica Pop-Busui
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
12
|
Afshinnia F, Reynolds EL, Rajendiran TM, Soni T, Byun J, Savelieff MG, Looker HC, Nelson RG, Michailidis G, Callaghan BC, Pennathur S, Feldman EL. Serum lipidomic determinants of human diabetic neuropathy in type 2 diabetes. Ann Clin Transl Neurol 2022; 9:1392-1404. [PMID: 35923113 PMCID: PMC9463947 DOI: 10.1002/acn3.51639] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE The serum lipidomic profile associated with neuropathy in type 2 diabetes is not well understood. Obesity and dyslipidemia are known neuropathy risk factors, suggesting lipid profiles early during type 2 diabetes may identify individuals who develop neuropathy later in the disease course. This retrospective cohort study examined lipidomic profiles 10 years prior to type 2 diabetic neuropathy assessment. METHODS Participants comprised members of the Gila River Indian community with type 2 diabetes (n = 69) with available stored serum samples and neuropathy assessment 10 years later using the combined Michigan Neuropathy Screening Instrument (MNSI) examination and questionnaire scores. A combined MNSI index was calculated from examination and questionnaire scores. Serum lipids (435 species from 18 classes) were quantified by mass spectrometry. RESULTS The cohort included 17 males and 52 females with a mean age of 45 years (SD = 9 years). Participants were stratified as with (high MNSI index score > 2.5407) versus without neuropathy (low MNSI index score ≤ 2.5407). Significantly decreased medium-chain acylcarnitines and increased total free fatty acids, independent of chain length and saturation, in serum at baseline associated with incident peripheral neuropathy at follow-up, that is, participants had high MNSI index scores, independent of covariates. Participants with neuropathy also had decreased phosphatidylcholines and increased lysophosphatidylcholines at baseline, independent of chain length and saturation. The abundance of other lipid classes did not differ significantly by neuropathy status. INTERPRETATION Abundance differences in circulating acylcarnitines, free fatty acids, phosphatidylcholines, and lysophosphatidylcholines 10 years prior to neuropathy assessment are associated with neuropathy status in type 2 diabetes.
Collapse
Affiliation(s)
- Farsad Afshinnia
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA
| | - Evan L. Reynolds
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Thekkelnaycke M. Rajendiran
- University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA
- Department of PathologyUniversity of MichiganAnn ArborMichiganUSA
| | - Tanu Soni
- University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA
| | - Jaeman Byun
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
| | - Helen C. Looker
- Chronic Kidney Disease SectionNational Institute of Diabetes and Digestive and Kidney DiseasesPhoenixArizonaUSA
| | - Robert G. Nelson
- Chronic Kidney Disease SectionNational Institute of Diabetes and Digestive and Kidney DiseasesPhoenixArizonaUSA
| | - George Michailidis
- Department of Statistics and the Informatics InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Brian C. Callaghan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| | - Subramaniam Pennathur
- Department of Internal Medicine‐NephrologyUniversity of MichiganAnn ArborMichiganUSA
- University of Michigan, Michigan Regional Comprehensive Metabolomics Resource CoreAnn ArborMichiganUSA
- Department of Molecular and Integrative PhysiologyUniversity of MichiganAnn ArborMichiganUSA
| | - Eva L. Feldman
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichiganUSA
- Department of NeurologyUniversity of MichiganAnn ArborMichiganUSA
| |
Collapse
|
13
|
Rumora AE, Kim B, Feldman EL. A Role for Fatty Acids in Peripheral Neuropathy Associated with Type 2 Diabetes and Prediabetes. Antioxid Redox Signal 2022; 37:560-577. [PMID: 35152728 PMCID: PMC9499450 DOI: 10.1089/ars.2021.0155] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 11/12/2022]
Abstract
Significance: As the global prevalence of diabetes rises, diabetic complications are also increasing at an alarming rate. Peripheral neuropathy (PN) is the most prevalent complication of diabetes and prediabetes, and is characterized by progressive sensory loss resulting from nerve damage. While hyperglycemia is the major risk factor for PN in type 1 diabetes (T1D), the metabolic syndrome (MetS) underlies the onset and progression of PN in type 2 diabetes (T2D) and prediabetes. Recent Advances: Recent reports show that dyslipidemia, a MetS component, is strongly associated with PN in T2D and prediabetes. Dyslipidemia is characterized by an abnormal plasma lipid profile with uncontrolled lipid levels, and both clinical and preclinical studies implicate a role for dietary fatty acids (FAs) in PN pathogenesis. Molecular studies further show that saturated and unsaturated FAs differentially regulate the nerve lipid profile and nerve function. Critical Issues: We first review the properties of FAs and the neuroanatomy of the peripheral nervous system (PNS). Second, we discuss clinical and preclinical studies that implicate the involvement of FAs in PN. Third, we summarize the potential effects of FAs on nerve function and lipid metabolism within the peripheral nerves, sensory neurons, and Schwann cells. Future Directions: Future directions will focus on identifying molecular pathways in T2D and prediabetes that are modulated by FAs in PN. Determining pathophysiological mechanisms that underlie the injurious effects of saturated FAs and beneficial properties of unsaturated FAs will provide mechanistic targets for developing new targeted therapies to treat PN associated with T2D and prediabetes. Antioxid. Redox Signal. 37, 560-577.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of Neurology, Columbia University, New York, New York, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Chandrasekaran K, Najimi N, Sagi AR, Yarlagadda S, Salimian M, Arvas MI, Hedayat AF, Kevas Y, Kadakia A, Russell JW. NAD + Precursors Repair Mitochondrial Function in Diabetes and Prevent Experimental Diabetic Neuropathy. Int J Mol Sci 2022; 23:4887. [PMID: 35563288 PMCID: PMC9102948 DOI: 10.3390/ijms23094887] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 12/04/2022] Open
Abstract
Axon degeneration in diabetic peripheral neuropathy (DPN) is associated with impaired NAD+ metabolism. We tested whether the administration of NAD+ precursors, nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), prevents DPN in models of Type 1 and Type 2 diabetes. NMN was administered to streptozotocin (STZ)-induced diabetic rats and STZ-induced diabetic mice by intraperitoneal injection at 50 or 100 mg/kg on alternate days for 2 months. mice The were fed with a high fat diet (HFD) for 2 months with or without added NR at 150 or 300 mg/kg for 2 months. The administration of NMN to STZ-induced diabetic rats or mice or dietary addition of NR to HFD-fed mice improved sensory function, normalized sciatic and tail nerve conduction velocities, and prevented loss of intraepidermal nerve fibers in skin samples from the hind-paw. In adult dorsal root ganglion (DRG) neurons isolated from HFD-fed mice, there was a decrease in NAD+ levels and mitochondrial maximum reserve capacity. These impairments were normalized in isolated DRG neurons from NR-treated mice. The results indicate that the correction of NAD+ depletion in DRG may be sufficient to prevent DPN but does not significantly affect glucose tolerance, insulin levels, or insulin resistance.
Collapse
Affiliation(s)
- Krish Chandrasekaran
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
| | - Neda Najimi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Avinash R. Sagi
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Sushuma Yarlagadda
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Mohammad Salimian
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Muhammed Ikbal Arvas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Ahmad F. Hedayat
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Yanni Kevas
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - Anand Kadakia
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
| | - James W. Russell
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (K.C.); (N.N.); (A.R.S.); (S.Y.); (M.S.); (M.I.A.); (A.F.H.); (Y.K.); (A.K.)
- Veterans Affairs Medical Center, Baltimore, MD 21201, USA
- CAMC Institute for Academic Medicine, 415 Morris Street Suite 300, Charleston, WV 25301, USA
| |
Collapse
|
15
|
Correlation Analysis and Intervention Study on Disturbance of Lipid Metabolism and Diabetic Peripheral Neuropathy. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2579692. [PMID: 35242203 PMCID: PMC8888052 DOI: 10.1155/2022/2579692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022]
Abstract
Objective To explore the significance and clinical value of dynamic monitoring of lipid metabolism indexes in patients with diabetic peridiabetic lesions. Methods A total of 192 patients with type 2 diabetes (T2DM) treated in our hospital from October 2019 to July 2021 were divided into two groups according to whether they were complicated with peripheral neuropathy (DPN). The patients in the observation group were randomly assigned into group A (n = 45) and group B (n = 45) according to the method of random number table. The patients were assigned into control group (n = 102) and observation group (n = 90), and the patients in the observation group were randomly divided into two groups (n = 45). All the patients in the three groups were given routine hypoglycemic treatment, and group B was observed to dynamically monitor the indexes of lipid metabolism and regulate blood lipids on the basis of routine hypoglycemic treatment. The indexes of lipid metabolism, including total cholesterol (TC), triglyceride (TG), and high-density lipoprotein cholesterol (HDL-C)/low-density lipoprotein cholesterol (LDL-C), were detected before treatment. The receiver operating curve (ROC) was applied to elucidate the efficacy of TC, TG, and HDL-C and LDL-C in predicting peripheral neuropathy (DPN) in patients with T2DM. The indexes of lipid metabolism and neurological function of patients were determined after the treatment. The difference was considered to be statistically significant (P < 0.05). Results In contrast to the control, the serum levels of TG, TC, and LDL-C in the observation group were significantly higher, with HDL-C significantly lower. ROC curve analysis indicated that the area under the curve (AUC) of serum TG level to predict peripheral neuropathy in patients with T2DM was 0.753 (95% CI = 0.604 − 0.901, P = 0.007). When the Youden index reached the maximum (0.677), with corresponding sensitivity and specificity 77.18% and 82.58%, respectively, and the critical value was 2.31 mmol/L, the AUC of serum TC level for predicting peripheral neuropathy in patients with T2DM was 0.851 (95% CI = 0.735 ~ 0.967P < 0.001); when the Youden index reaches its maximum (0.750), with the sensitivity and specificity 84.44% and 92.06%, respectively, and the critical value is 4.52 mmol/L, the AUC of predicting peripheral neuropathy in patients with T2DM by serum LDL-C level was 0.799 (95% CI = 0.52 ~ 0.946, P = 0.001); when the Youden index reaches its maximum (0.706), with sensitivity and specificity 80.58% and 87.24%, respectively, and the critical value is 3.36 mmol/L, the AUC of serum HDL-C level for predicting DPN in patients with T2DM was 0.727 (95% CI = 0.568 ~ 0.886P = 0.014). When the Youden index reached the maximum (0.640), the sensitivity and specificity were 74.56% and 83.25%, respectively, the critical value is 1.51 mmol/L. The AUC in predicting DPN in patients with T2DM was 0.919 (95% CI = 0.839 ~ 0.978P < 0.001); when the Jordan index reached the maximum (0.786), the sensitivity and specificity were 91.75% and 95.82%, respectively. Compared with group A, the levels of serum TG, TC, and LDL-C in group B decreased significantly, while the level of HDL-C increased (P < 0.05). The motor nerve conduction velocity and sensory nerve conduction velocity of median nerve and peroneal nerve in group B were higher than those in group A (P < 0.05). Conclusion Diabetic patients with severe lipid metabolic disorders have a higher risk of DPN. Combined detection of lipid metabolism indexes such as TC, TG, and HDL-C and LDL-C is effective in predicting diabetic patients with DPN. In clinic, through dynamic monitoring of lipid metabolism indexes, we can actively regulate the level of blood lipids in patients with T2DM, which can delay the occurrence and development of DPN to a certain extent, as well as improving the prognosis of patients with diabetes.
Collapse
|
16
|
George DS, Hackelberg S, Jayaraj ND, Ren D, Edassery SL, Rathwell CA, Miller RE, Malfait AM, Savas JN, Miller RJ, Menichella DM. Mitochondrial calcium uniporter deletion prevents painful diabetic neuropathy by restoring mitochondrial morphology and dynamics. Pain 2022; 163:560-578. [PMID: 34232927 PMCID: PMC8720329 DOI: 10.1097/j.pain.0000000000002391] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/25/2021] [Accepted: 06/18/2021] [Indexed: 01/11/2023]
Abstract
ABSTRACT Painful diabetic neuropathy (PDN) is an intractable complication affecting 25% of diabetic patients. Painful diabetic neuropathy is characterized by neuropathic pain accompanied by dorsal root ganglion (DRG) nociceptor hyperexcitability, resulting in calcium overload, axonal degeneration, and loss of cutaneous innervation. The molecular pathways underlying these effects are unknown. Using high-throughput and deep-proteome profiling, we found that mitochondrial fission proteins were elevated in DRG neurons from mice with PDN induced by a high-fat diet (HFD). In vivo calcium imaging revealed increased calcium signaling in DRG nociceptors from mice with PDN. Furthermore, using electron microscopy, we showed that mitochondria in DRG nociceptors had fragmented morphology as early as 2 weeks after starting HFD, preceding the onset of mechanical allodynia and small-fiber degeneration. Moreover, preventing calcium entry into the mitochondria, by selectively deleting the mitochondrial calcium uniporter from these neurons, restored normal mitochondrial morphology, prevented axonal degeneration, and reversed mechanical allodynia in the HFD mouse model of PDN. These studies suggest a molecular cascade linking neuropathic pain to axonal degeneration in PDN. In particular, nociceptor hyperexcitability and the associated increased intracellular calcium concentrations could lead to excessive calcium entry into mitochondria mediated by the mitochondrial calcium uniporter, resulting in increased calcium-dependent mitochondrial fission and ultimately contributing to small-fiber degeneration and neuropathic pain in PDN. Hence, we propose that targeting calcium entry into nociceptor mitochondria may represent a promising effective and disease-modifying therapeutic approach for this currently intractable and widespread affliction. Moreover, these results are likely to inform studies of other neurodegenerative disease involving similar underlying events.
Collapse
Affiliation(s)
| | | | | | - Dongjun Ren
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | | - Craig A. Rathwell
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Rachel E. Miller
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | - Anne-Marie Malfait
- Department of Internal Medicine, Rush Medical College, Chicago, IL, United States
| | | | - Richard J. Miller
- Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | | |
Collapse
|
17
|
Savelieff MG, Noureldein MH, Feldman EL. Systems Biology to Address Unmet Medical Needs in Neurological Disorders. Methods Mol Biol 2022; 2486:247-276. [PMID: 35437727 PMCID: PMC9446424 DOI: 10.1007/978-1-0716-2265-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neurological diseases are highly prevalent and constitute a significant cause of mortality and disability. Neurological disorders encompass a heterogeneous group of neurodegenerative conditions, broadly characterized by injury to the peripheral and/or central nervous system. Although the etiology of neurological diseases varies greatly, they share several characteristics, such as heterogeneity of clinical presentation, non-cell autonomous nature, and diversity of cellular, subcellular, and molecular pathways. Systems biology has emerged as a valuable platform for addressing the challenges of studying heterogeneous neurological diseases. Systems biology has manifold applications to address unmet medical needs for neurological illness, including integrating and correlating different large datasets covering the transcriptome, epigenome, proteome, and metabolome associated with a specific condition. This is particularly useful for disentangling the heterogeneity and complexity of neurological conditions. Hence, systems biology can help in uncovering pathophysiology to develop novel therapeutic targets and assessing the impact of known treatments on disease progression. Additionally, systems biology can identify early diagnostic biomarkers, to help diagnose neurological disease preceded by a long subclinical phase, as well as define the exposome, the collection of environmental toxicants that increase risk of certain neurological diseases. In addition to these current applications, there are numerous potential emergent uses, such as precision medicine.
Collapse
Affiliation(s)
- Masha G Savelieff
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
| | - Mohamed H Noureldein
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Eva L Feldman
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
18
|
Zhang T, Li J, Zhao G. Quality Control Mechanisms of Mitochondria: Another Important Target for Treatment of Peripheral Neuropathy. DNA Cell Biol 2021; 40:1513-1527. [PMID: 34851723 DOI: 10.1089/dna.2021.0529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mitochondria provide energy for various cellular activities and are involved in the regulating of several physiological and pathological processes. Mitochondria constitute a dynamic network regulated by numerous quality control mechanisms; for example, division is necessary for mitochondria to develop, and fusion dilutes toxins produced by the mitochondria. Mitophagy removes damaged mitochondria. The etiologies of peripheral neuropathy include congenital and acquired diseases, and the pathogenesis varies; however, oxidative stress caused by mitochondrial damage is the accepted pathogenesis of peripheral neuropathy. Regulation and control of mitochondrial quality might point the way toward potential treatments for peripheral neuropathy. This article will review mitochondrial quality control mechanisms, their involvement in peripheral nerve diseases, and their potential therapeutic role.
Collapse
Affiliation(s)
- Te Zhang
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Jiannan Li
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| | - Guoqing Zhao
- China-Japan Union Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
19
|
Rumora AE, Guo K, Alakwaa FM, Andersen ST, Reynolds EL, Jørgensen ME, Witte DR, Tankisi H, Charles M, Savelieff MG, Callaghan BC, Jensen TS, Feldman EL. Plasma lipid metabolites associate with diabetic polyneuropathy in a cohort with type 2 diabetes. Ann Clin Transl Neurol 2021; 8:1292-1307. [PMID: 33955722 PMCID: PMC8164865 DOI: 10.1002/acn3.51367] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The global rise in type 2 diabetes is associated with a concomitant increase in diabetic complications. Diabetic polyneuropathy is the most frequent type 2 diabetes complication and is associated with poor outcomes. The metabolic syndrome has emerged as a major risk factor for diabetic polyneuropathy; however, the metabolites associated with the metabolic syndrome that correlate with diabetic polyneuropathy are unknown. METHODS We conducted a global metabolomics analysis on plasma samples from a subcohort of participants from the Danish arm of Anglo-Danish-Dutch study of Intensive Treatment of Diabetes in Primary Care (ADDITION-Denmark) with and without diabetic polyneuropathy versus lean control participants. RESULTS Compared to lean controls, type 2 diabetes participants had significantly higher HbA1c (p = 0.0028), BMI (p = 0.0004), and waist circumference (p = 0.0001), but lower total cholesterol (p = 0.0001). Out of 991 total metabolites, we identified 15 plasma metabolites that differed in type 2 diabetes participants by diabetic polyneuropathy status, including metabolites belonging to energy, lipid, and xenobiotic pathways, among others. Additionally, these metabolites correlated with alterations in plasma lipid metabolites in type 2 diabetes participants based on neuropathy status. Further evaluating all plasma lipid metabolites identified a shift in abundance, chain length, and saturation of free fatty acids in type 2 diabetes participants. Importantly, the presence of diabetic polyneuropathy impacted the abundance of plasma complex lipids, including acylcarnitines and sphingolipids. INTERPRETATION Our explorative study suggests that diabetic polyneuropathy in type 2 diabetes is associated with novel alterations in plasma metabolites related to lipid metabolism.
Collapse
Affiliation(s)
- Amy E. Rumora
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Kai Guo
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
- Department of Biomedical SciencesUniversity of North DakotaGrand ForksNorth Dakota
| | - Fadhl M. Alakwaa
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | | | - Evan L. Reynolds
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Marit E. Jørgensen
- Steno Diabetes Center CopenhagenGentofteDenmark
- University of Southern DenmarkOdenseDenmark
| | - Daniel R. Witte
- Department of Public HealthAarhus UniversityAarhusDenmark
- Danish Diabetes AcademyOdenseDenmark
| | - Hatice Tankisi
- Department of Clinical NeurophysiologyAarhus UniversityAarhusDenmark
| | - Morten Charles
- Department of Public HealthAarhus UniversityAarhusDenmark
| | - Masha G. Savelieff
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Brian C. Callaghan
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| | - Troels S. Jensen
- Danish Pain Research CenterDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Eva L. Feldman
- Department of NeurologyUniversity of MichiganAnn ArborMichigan
- NeuroNetwork for Emerging TherapiesUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
20
|
Zhu J, Yang X, Li X, Han S, Zhu Y, Xu L. Tang Luo Ning, a Traditional Chinese Compound Prescription, Ameliorates Schwannopathy of Diabetic Peripheral Neuropathy Rats by Regulating Mitochondrial Dynamics In Vivo and In Vitro. Front Pharmacol 2021; 12:650448. [PMID: 34054529 PMCID: PMC8160508 DOI: 10.3389/fphar.2021.650448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/12/2021] [Indexed: 01/12/2023] Open
Abstract
Tang Luo Ning (TLN), a traditional Chinese compound prescription, has been used clinically to treat diabetic peripheral neuropathy (DPN) in China. However, the exact mechanisms remain unclear. The objective of this study is to unravel the effects of TLN on mitochondrial dynamics of DPN in streptozotocin-induced rat models and Schwann cells cultured in 150 mM glucose. Mitochondrial function was determined by Ca2+ and ATP levels of streptozotocin (STZ)-induced DPN rats and mitochondria structure, mitochondrial membrane potential (MMP), and mtDNA of high glucose incubated SCs. Mitochondrial dynamics protein including mitofusin 1 (Mfn1), mitofusin 2 (Mfn2), optic atrophy 1 (Opa1), and dynamin-related protein 1 (Drp1) were investigated using Western blot or immunofluorescence. Myelin basic protein (MBP), myelin protein zero (MPZ), and sex-determining region Y (SRY)-box 10 (Sox10) were measured to represent schwannopathy. Our results showed that TLN increased ATP levels (0.38 of model, 0.69 of HTLN, 0.61 of LTLN, P<0.01; 0.52 of 150 mM glucose, 1.00 of 10% TLN, P<0.01, 0.94 of 1% TLN, P<0.05), MMP (0.56 of 150 mM glucose, P<0.01, 0.75 of 10% TLN, P<0.05, 0.83 of 1% TLN, P<0.01), and mtDNA (0.32 of 150 mM glucose, 0.43 of 10% TLN, P<0.01) while decreased Ca2+ (1.54 of model, 1.06 of HTLN, 0.96 of LTLN, P<0.01) to improve mitochondrial function in vivo and in vitro. TLN helps maintain balance of mitochondrial dynamics: it reduces the mitochondria number (1.60 of 150 mM glucose, 1.10 of 10% TLN, P<0.01) and increases the mitochondria coverage (0.51 of 150 mM glucose, 0.80 of 10% TLN, 0.87 of 1% TLN, P<0.01), mitochondrial network size (0.51 of 150 mM glucose, 0.95 of 10% TLN, 0.94 of 1% TLN, P<0.01), and branch length (0.63 of 150 mM glucose, P<0.01, 0.73 of 10% TLN, P<0.05, 0.78 of 1% TLN, P<0.01). Further, mitochondrial dynamics–related Mfn1 (0.47 of model, 0.82 of HTLN, 0.77 of LTLN, P<0.01; 0.42 of 150 mM glucose, 0.56 of 10% TLN, 0.57 of 1% TLN, P<0.01), Mfn2 (0.40 of model, 0.84 of HTLN, 0.63 of LTLN, P<0.01; 0.46 of 150 mM glucose, 1.40 of 10% TLN, 1.40 of 1% TLN, P<0.01), and Opa1 (0.58 of model, 0.71 of HTLN, 0.90 of LTLN, P<0.01; 0.69 of 150 mM glucose, 0.96 of 10% TLN, 0.98 of 1% TLN, P<0.05) were increased, while Drp1 (1.39 of model, 0.96 of HTLN, 1.18 of LTLN, P<0.01; 1.70 of 150 mM glucose, 1.20 of 10% TLN, 1.10 of 1% TLN, P<0.05), phosphorylated Drp1 (2.61 of model, 1.44 of HTLN, P<0.05; 2.80 of 150 mM glucose, 1.50 of 10% TLN, 1.30 of 1% TLN, P<0.01), and Drp1 located in mitochondria (1.80 of 150 mM glucose, 1.00 of 10% TLN, P<0.05) were decreased after treatment with TLN. Additionally, TLN improved schwannopathy by increasing MBP (0.50 of model, 1.05 of HTLN, 0.94 of HTLN, P<0.01; 0.60 of 150 mM glucose, 0.78 of 10% TLN, P<0.01, 0.72 of 1% TLN, P<0.05), Sox101 (0.41 of model, 0.99 of LTLN, P<0.01; 0.48 of 150 mM glucose, 0.65 of 10% TLN, P<0.05, 0.69 of 1% TLN, P<0.01), and MPZ (0.48 of model, 0.66 of HTLN, 0.55 of HTLN, P<0.01; 0.60 of 150 mM glucose, 0.78 of 10% TLN, P<0.01, 0.75 of 1% TLN, P<0.05) expressions. In conclusion, our study indicated that TLN’s function on DPN may link to the improvement of the mitochondrial dynamics, which provides scientific evidence for the clinical application.
Collapse
Affiliation(s)
- Jiayue Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Diasease Theory Research, Capital Medical University, Beijing, China
| | - Xinwei Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Diasease Theory Research, Capital Medical University, Beijing, China
| | - Xiao Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Diasease Theory Research, Capital Medical University, Beijing, China
| | - Shuo Han
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Diasease Theory Research, Capital Medical University, Beijing, China
| | - Yanbo Zhu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Diasease Theory Research, Capital Medical University, Beijing, China
| | - Liping Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Diasease Theory Research, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
Sharma G, Pfeffer G, Shutt TE. Genetic Neuropathy Due to Impairments in Mitochondrial Dynamics. BIOLOGY 2021; 10:268. [PMID: 33810506 PMCID: PMC8066130 DOI: 10.3390/biology10040268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/19/2021] [Accepted: 03/21/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are dynamic organelles capable of fusing, dividing, and moving about the cell. These properties are especially important in neurons, which in addition to high energy demand, have unique morphological properties with long axons. Notably, mitochondrial dysfunction causes a variety of neurological disorders including peripheral neuropathy, which is linked to impaired mitochondrial dynamics. Nonetheless, exactly why peripheral neurons are especially sensitive to impaired mitochondrial dynamics remains somewhat enigmatic. Although the prevailing view is that longer peripheral nerves are more sensitive to the loss of mitochondrial motility, this explanation is insufficient. Here, we review pathogenic variants in proteins mediating mitochondrial fusion, fission and transport that cause peripheral neuropathy. In addition to highlighting other dynamic processes that are impacted in peripheral neuropathies, we focus on impaired mitochondrial quality control as a potential unifying theme for why mitochondrial dysfunction and impairments in mitochondrial dynamics in particular cause peripheral neuropathy.
Collapse
Affiliation(s)
- Govinda Sharma
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
22
|
Abstract
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
Collapse
|
23
|
Lee KA, Park TS, Jin HY. Non-glucose risk factors in the pathogenesis of diabetic peripheral neuropathy. Endocrine 2020; 70:465-478. [PMID: 32895875 DOI: 10.1007/s12020-020-02473-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/23/2020] [Indexed: 11/29/2022]
Abstract
In this review, we consider the diverse risk factors in diabetes patients beyond hyperglycemia that are being recognized as contributors to diabetic peripheral neuropathy (DPN). Interest in such alternative mechanisms has been encouraged by the recognition that neuropathy occurs in subjects with metabolic syndrome and pre-diabetes and by the reporting of several large clinical studies that failed to show reduced prevalence of neuropathy after intensive glucose control in patients with type 2 diabetes. Animal models of obesity, dyslipidemia, hypertension, and other disorders common to both pre-diabetes and diabetes have been used to highlight a number of plausible pathogenic mechanisms that may either damage the nerve independent of hyperglycemia or augment the toxic potential of hyperglycemia. While pathogenic mechanisms stemming from hyperglycemia are likely to be significant contributors to DPN, future therapeutic strategies will require a more nuanced approach that considers a range of concurrent insults derived from the complex pathophysiology of diabetes beyond direct hyperglycemia.
Collapse
Affiliation(s)
- Kyung Ae Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonbuk National University, Medical School, Jeonju, South Korea
| | - Tae Sun Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonbuk National University, Medical School, Jeonju, South Korea
| | - Heung Yong Jin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Research Institute of Clinical Medicine of Jeonbuk National University-Jeonbuk National University Hospital, Jeonbuk National University, Medical School, Jeonju, South Korea.
| |
Collapse
|
24
|
Fay A, Garcia Y, Margeta M, Maharjan S, Jürgensen C, Briceño J, Garcia M, Yin S, Bassaganyas L, McMahon T, Hou YM, Fu YH, Ptáček LJ. A Mitochondrial tRNA Mutation Causes Axonal CMT in a Large Venezuelan Family. Ann Neurol 2020; 88:830-842. [PMID: 32715519 DOI: 10.1002/ana.25854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The objective of this study was to identify the genetic cause for progressive peripheral nerve disease in a Venezuelan family. Despite the growing list of genes associated with Charcot-Marie-Tooth disease, many patients with axonal forms lack a genetic diagnosis. METHODS A pedigree was constructed, based on family clinical data. Next-generation sequencing of mitochondrial DNA (mtDNA) was performed for 6 affected family members. Muscle biopsies from 4 family members were used for analysis of muscle histology and ultrastructure, mtDNA sequencing, and RNA quantification. Ultrastructural studies were performed on sensory nerve biopsies from 2 affected family members. RESULTS Electrodiagnostic testing showed a motor and sensory axonal polyneuropathy. Pedigree analysis revealed inheritance only through the maternal line, consistent with mitochondrial transmission. Sequencing of mtDNA identified a mutation in the mitochondrial tRNAVal (mt-tRNAVal ) gene, m.1661A>G, present at nearly 100% heteroplasmy, which disrupts a Watson-Crick base pair in the T-stem-loop. Muscle biopsies showed chronic denervation/reinnervation changes, whereas biochemical analysis of electron transport chain (ETC) enzyme activities showed reduction in multiple ETC complexes. Northern blots from skeletal muscle total RNA showed severe reduction in abundance of mt-tRNAVal , and mildly increased mt-tRNAPhe , in subjects compared with unrelated age- and sex-matched controls. Nerve biopsies from 2 affected family members demonstrated ultrastructural mitochondrial abnormalities (hyperplasia, hypertrophy, and crystalline arrays) consistent with a mitochondrial neuropathy. CONCLUSION We identify a previously unreported cause of Charcot-Marie-Tooth (CMT) disease, a mutation in the mt-tRNAVal , in a Venezuelan family. This work expands the list of CMT-associated genes from protein-coding genes to a mitochondrial tRNA gene. ANN NEUROL 2020;88:830-842.
Collapse
Affiliation(s)
- Alexander Fay
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Yngo Garcia
- Department of Biochemistry, Faculty of Medicine, University of The Andes, Mérida, Venezuela.,Unit of Surgery, Neurosurgery Service, Medical Surgery Clinical Institute, Mérida, Venezuela
| | - Marta Margeta
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Sunita Maharjan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Claudia Jürgensen
- Department of Biology, Faculty of Science, University of The Andes, Mérida, Venezuela
| | - Jose Briceño
- Physiotherapy and Rehabilitation Service, University Hospital of The Andes, Mérida, Venezuela
| | - Mariaelena Garcia
- Department of Biology, Faculty of Science, University of The Andes, Mérida, Venezuela
| | - Sitao Yin
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Laia Bassaganyas
- Department of Medical Genetics, University of Cambridge and Cardiovascular Research Institute, University of California, San Francisco, CA, USA
| | - Thomas McMahon
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ying-Hui Fu
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Louis J Ptáček
- Department of Neurology, University of California, San Francisco, CA, USA
| |
Collapse
|
25
|
Asiri MMH, Engelsman S, Eijkelkamp N, Höppener JWM. Amyloid Proteins and Peripheral Neuropathy. Cells 2020; 9:E1553. [PMID: 32604774 PMCID: PMC7349787 DOI: 10.3390/cells9061553] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/20/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
Painful peripheral neuropathy affects millions of people worldwide. Peripheral neuropathy develops in patients with various diseases, including rare familial or acquired amyloid polyneuropathies, as well as some common diseases, including type 2 diabetes mellitus and several chronic inflammatory diseases. Intriguingly, these diseases share a histopathological feature-deposits of amyloid-forming proteins in tissues. Amyloid-forming proteins may cause tissue dysregulation and damage, including damage to nerves, and may be a common cause of neuropathy in these, and potentially other, diseases. Here, we will discuss how amyloid proteins contribute to peripheral neuropathy by reviewing the current understanding of pathogenic mechanisms in known inherited and acquired (usually rare) amyloid neuropathies. In addition, we will discuss the potential role of amyloid proteins in peripheral neuropathy in some common diseases, which are not (yet) considered as amyloid neuropathies. We conclude that there are many similarities in the molecular and cell biological defects caused by aggregation of the various amyloid proteins in these different diseases and propose a common pathogenic pathway for "peripheral amyloid neuropathies".
Collapse
Affiliation(s)
- Mohammed M. H. Asiri
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
- The National Centre for Genomic Technology, Life Science and Environment Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, 11461 Riyadh, Saudi Arabia
| | - Sjoukje Engelsman
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
| | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
| | - Jo W. M. Höppener
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands; (M.M.H.A.); (S.E.); (J.W.M.H.)
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 EA Utrecht, The Netherlands
| |
Collapse
|
26
|
Stino AM, Rumora AE, Kim B, Feldman EL. Evolving concepts on the role of dyslipidemia, bioenergetics, and inflammation in the pathogenesis and treatment of diabetic peripheral neuropathy. J Peripher Nerv Syst 2020; 25:76-84. [PMID: 32412144 PMCID: PMC7375363 DOI: 10.1111/jns.12387] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most widespread and disabling neurological conditions, accounting for half of all neuropathy cases worldwide. Despite its high prevalence, no approved disease modifying therapies exist. There is now a growing body of evidence that DPN secondary to type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) represents different disease processes, with T2DM DPN best understood within the context of metabolic syndrome rather than hyperglycemia. In this review, we highlight currently understood mechanisms of DPN, along with their corresponding potential therapeutic targets. We frame this discussion within a practical overview of how the field evolved from initial human observations to murine pathomechanistic and therapeutic models into ongoing and human clinical trials, with particular emphasis on T2DM DPN and metabolic syndrome.
Collapse
Affiliation(s)
- Amro Maher Stino
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
- Division of Neuromuscular Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Amy E. Rumora
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| | - Eva L. Feldman
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
- Division of Neuromuscular Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA 48109
| |
Collapse
|
27
|
Yousuf MS, Maguire AD, Simmen T, Kerr BJ. Endoplasmic reticulum-mitochondria interplay in chronic pain: The calcium connection. Mol Pain 2020; 16:1744806920946889. [PMID: 32787562 PMCID: PMC7427143 DOI: 10.1177/1744806920946889] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is a debilitating condition that affects roughly a third to a half of the world's population. Despite its substantial effect on society, treatment for chronic pain is modest, at best, notwithstanding its side effects. Hence, novel therapeutics are direly needed. Emerging evidence suggests that calcium plays an integral role in mediating neuronal plasticity that underlies sensitization observed in chronic pain states. The endoplasmic reticulum and the mitochondria are the largest calcium repositories in a cell. Here, we review how stressors, like accumulation of misfolded proteins and oxidative stress, influence endoplasmic reticulum and mitochondria function and contribute to chronic pain. We further examine the shuttling of calcium across the mitochondrial-associated membrane as a mechanism of cross-talk between the endoplasmic reticulum and the mitochondria. In addition, we discuss how endoplasmic reticulum stress, mitochondrial impairment, and calcium dyshomeostasis are implicated in various models of neuropathic pain. We propose a novel framework of endoplasmic reticulum-mitochondria signaling in mediating pain hypersensitivity. These observations require further investigation in order to develop novel therapies for chronic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|