1
|
Walls AB, Andersen JV, Waagepetersen HS, Bak LK. Fueling Brain Inhibition: Integrating GABAergic Neurotransmission and Energy Metabolism. Neurochem Res 2025; 50:136. [PMID: 40189668 DOI: 10.1007/s11064-025-04384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Despite decades of research in brain energy metabolism and to what extent different cell types utilize distinct substrates for their energy metabolism, this topic remains a vibrant area of neuroscience research. In this review, we focus on the substrates utilized by the inhibitory GABAergic neurons, which has been less explored than glutamatergic neurons. First, we discuss how GABAergic neurons may utilize both glucose, lactate, or ketone bodies under different functional conditions, and provide some preliminary data suggesting that unlike glutamatergic neurons, GABAergic neurons work well when substrate supply is restricted to lactate. We end by discussing the role of GABAergic neuron energy metabolism in pathologies where failure of inhibitory function play a central role, namely epilepsy, hepatic encephalopathy, and Alzheimer's disease.
Collapse
Affiliation(s)
- Anne B Walls
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Capital Region Hospital Pharmacy, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jens V Andersen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | - Lasse K Bak
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
- Translational Research Center (TRACE), Copenhagen University Hospital - Rigshospitalet, Glostrup, Denmark.
| |
Collapse
|
2
|
Allami P, Yazdanpanah N, Rezaei N. The role of neuroinflammation in PV interneuron impairments in brain networks; implications for cognitive disorders. Rev Neurosci 2025:revneuro-2024-0153. [PMID: 39842401 DOI: 10.1515/revneuro-2024-0153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 01/24/2025]
Abstract
Fast spiking parvalbumin (PV) interneuron is an inhibitory gamma-aminobutyric acid (GABA)ergic interneuron diffused in different brain networks, including the cortex and hippocampus. As a key component of brain networks, PV interneurons collaborate in fundamental brain functions such as learning and memory by regulating excitation and inhibition (E/I) balance and generating gamma oscillations. The unique characteristics of PV interneurons, like their high metabolic demands and long branching axons, make them too vulnerable to stressors. Neuroinflammation is one of the most significant stressors that have an adverse, long-lasting impact on PV interneurons. Neuroinflammation affects PV interneurons through specialized inflammatory pathways triggered by cytokines such as tumor necrosis factor (TNF) and interleukin 6 (IL-6). The crucial cells in neuroinflammation, microglia, also play a significant role. The destructive effect of inflammation on PV interneurons can have comprehensive effects and cause neurological disorders such as schizophrenia, Alzheimer's disease (AD), autism spectrum disorder (ASD), and bipolar disorder. In this article, we provide a comprehensive review of mechanisms in which neuroinflammation leads to PV interneuron hypofunction in these diseases. The integrated knowledge about the role of PV interneurons in cognitive networks of the brain and mechanisms involved in PV interneuron impairment in the pathology of these diseases can help us with better therapeutic interventions.
Collapse
Affiliation(s)
- Pantea Allami
- Student's Scientific Research Center, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
| | - Niloufar Yazdanpanah
- Student's Scientific Research Center, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences, Children's Medical Center Hospital , Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, 48439 Tehran University of Medical Sciences, Children's Medical Center Hospital , Dr. Qarib St, Keshavarz Blvd, Tehran 14194, Iran
- Department of Immunology, School of Medicine, 48439 Tehran University of Medical Sciences , Pour Sina St, Tehran 1416634793, Tehran, Iran
| |
Collapse
|
3
|
Anton PE, Maphis NM, Linsenbardt DN, Coleman LG. Excessive Alcohol Use as a Risk Factor for Alzheimer's Disease: Epidemiological and Preclinical Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:211-242. [PMID: 40128481 DOI: 10.1007/978-3-031-81908-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Alcohol use has recently emerged as a modifiable risk factor for Alzheimer's disease (AD). However, the neurobiological mechanisms by which alcohol interacts with AD pathogenesis remain poorly understood. In this chapter, we review the epidemiological and preclinical support for the interaction between alcohol use and AD. We hypothesize that alcohol use increases the rate of accumulation of specific AD-relevant pathologies during the prodromal phase and exacerbates dementia onset and progression. We find that alcohol consumption rates are increasing in adolescence, middle age, and aging populations. In tandem, rates of AD are also on the rise, potentially as a result of this increased alcohol use throughout the lifespan. We then review the biological processes in common between alcohol use disorder and AD as a means to uncover potential mechanisms by which they interact; these include oxidative stress, neuroimmune function, metabolism, pathogenic tauopathy development and spread, and neuronal excitatory/inhibitory balance (EIB). Finally, we provide some forward-thinking suggestions we believe this field should consider. In particular, the inclusion of alcohol use assessments in longitudinal studies of AD and more preclinical studies on alcohol's impacts using better animal models of late-onset Alzheimer's disease (LOAD).
Collapse
Affiliation(s)
- Paige E Anton
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Nicole M Maphis
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - David N Linsenbardt
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Kapogiannis D, Manolopoulos A, Mullins R, Avgerinos K, Delgado-Peraza F, Mustapic M, Nogueras-Ortiz C, Yao PJ, Pucha KA, Brooks J, Chen Q, Haas SS, Ge R, Hartnell LM, Cookson MR, Egan JM, Frangou S, Mattson MP. Brain responses to intermittent fasting and the healthy living diet in older adults. Cell Metab 2024; 36:1668-1678.e5. [PMID: 38901423 PMCID: PMC11305918 DOI: 10.1016/j.cmet.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 05/29/2024] [Indexed: 06/22/2024]
Abstract
Diet may promote brain health in metabolically impaired older individuals. In an 8-week randomized clinical trial involving 40 cognitively intact older adults with insulin resistance, we examined the effects of 5:2 intermittent fasting and the healthy living diet on brain health. Although intermittent fasting induced greater weight loss, the two diets had comparable effects in improving insulin signaling biomarkers in neuron-derived extracellular vesicles, decreasing the brain-age-gap estimate (reflecting the pace of biological aging of the brain) on magnetic resonance imaging, reducing brain glucose on magnetic resonance spectroscopy, and improving blood biomarkers of carbohydrate and lipid metabolism, with minimal changes in cerebrospinal fluid biomarkers for Alzheimer's disease. Intermittent fasting and healthy living improved executive function and memory, with intermittent fasting benefiting more certain cognitive measures. In exploratory analyses, sex, body mass index, and apolipoprotein E and SLC16A7 genotypes modulated diet effects. The study provides a blueprint for assessing brain effects of dietary interventions and motivates further research on intermittent fasting and continuous diets for brain health optimization. For further information, please see ClinicalTrials.gov registration: NCT02460783.
Collapse
Affiliation(s)
- Dimitrios Kapogiannis
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| | - Apostolos Manolopoulos
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Roger Mullins
- Morgan State University, Core Lab, Baltimore, MD, USA
| | | | - Francheska Delgado-Peraza
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Maja Mustapic
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Carlos Nogueras-Ortiz
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Pamela J Yao
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Krishna A Pucha
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Janet Brooks
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Qinghua Chen
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Shalaila S Haas
- Mt. Sinai School of Medicine, Department of Psychiatry, New York, NY, USA
| | - Ruiyang Ge
- Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Lisa M Hartnell
- Intramural Research Program, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Mark R Cookson
- Intramural Research Program, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Josephine M Egan
- Intramural Research Program, Laboratory of Clinical Investigation, National Institute on Aging, Baltimore, MD, USA
| | - Sophia Frangou
- Mt. Sinai School of Medicine, Department of Psychiatry, New York, NY, USA; Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
5
|
Szegedi V, Tiszlavicz Á, Furdan S, Douida A, Bakos E, Barzo P, Tamas G, Szucs A, Lamsa K. Aging-associated weakening of the action potential in fast-spiking interneurons in the human neocortex. J Biotechnol 2024; 389:1-12. [PMID: 38697361 DOI: 10.1016/j.jbiotec.2024.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Aging is associated with the slowdown of neuronal processing and cognitive performance in the brain; however, the exact cellular mechanisms behind this deterioration in humans are poorly elucidated. Recordings in human acute brain slices prepared from tissue resected during brain surgery enable the investigation of neuronal changes with age. Although neocortical fast-spiking cells are widely implicated in neuronal network activities underlying cognitive processes, they are vulnerable to neurodegeneration. Herein, we analyzed the electrical properties of 147 fast-spiking interneurons in neocortex samples resected in brain surgery from 106 patients aged 11-84 years. By studying the electrophysiological features of action potentials and passive membrane properties, we report that action potential overshoot significantly decreases and spike half-width increases with age. Moreover, the action potential maximum-rise speed (but not the repolarization speed or the afterhyperpolarization amplitude) significantly changed with age, suggesting a particular weakening of the sodium channel current generated in the soma. Cell passive membrane properties measured as the input resistance, membrane time constant, and cell capacitance remained unaffected by senescence. Thus, we conclude that the action potential in fast-spiking interneurons shows a significant weakening in the human neocortex with age. This may contribute to the deterioration of cortical functions by aging.
Collapse
Affiliation(s)
- Viktor Szegedi
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary
| | - Ádám Tiszlavicz
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary
| | - Szabina Furdan
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary
| | - Abdennour Douida
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary
| | - Emoke Bakos
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary
| | - Pal Barzo
- Department of Neurosurgery, University of Szeged, Hungary
| | - Gabor Tamas
- MTA-SZTE Research Group for Cortical Microcircuits, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary
| | - Attila Szucs
- Neuronal Cell Biology Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Karri Lamsa
- Hungarian Centre of Excellence for Molecular Medicine Research Group for Human Neuron Physiology and Therapy, Szeged, Hungary; Department of Physiology, Anatomy and Neuroscience, University of Szeged, Hungary.
| |
Collapse
|
6
|
Leitch B. Parvalbumin Interneuron Dysfunction in Neurological Disorders: Focus on Epilepsy and Alzheimer's Disease. Int J Mol Sci 2024; 25:5549. [PMID: 38791587 PMCID: PMC11122153 DOI: 10.3390/ijms25105549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/11/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Parvalbumin expressing (PV+) GABAergic interneurons are fast spiking neurons that provide powerful but relatively short-lived inhibition to principal excitatory cells in the brain. They play a vital role in feedforward and feedback synaptic inhibition, preventing run away excitation in neural networks. Hence, their dysfunction can lead to hyperexcitability and increased susceptibility to seizures. PV+ interneurons are also key players in generating gamma oscillations, which are synchronized neural oscillations associated with various cognitive functions. PV+ interneuron are particularly vulnerable to aging and their degeneration has been associated with cognitive decline and memory impairment in dementia and Alzheimer's disease (AD). Overall, dysfunction of PV+ interneurons disrupts the normal excitatory/inhibitory balance within specific neurocircuits in the brain and thus has been linked to a wide range of neurodevelopmental and neuropsychiatric disorders. This review focuses on the role of dysfunctional PV+ inhibitory interneurons in the generation of epileptic seizures and cognitive impairment and their potential as targets in the design of future therapeutic strategies to treat these disorders. Recent research using cutting-edge optogenetic and chemogenetic technologies has demonstrated that they can be selectively manipulated to control seizures and restore the balance of neural activity in the brains of animal models. This suggests that PV+ interneurons could be important targets in developing future treatments for patients with epilepsy and comorbid disorders, such as AD, where seizures and cognitive decline are directly linked to specific PV+ interneuron deficits.
Collapse
Affiliation(s)
- Beulah Leitch
- Department of Anatomy, School of Biomedical Sciences, Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
7
|
Almeida VN. Somatostatin and the pathophysiology of Alzheimer's disease. Ageing Res Rev 2024; 96:102270. [PMID: 38484981 DOI: 10.1016/j.arr.2024.102270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/09/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Among the central features of Alzheimer's disease (AD) progression are altered levels of the neuropeptide somatostatin (SST), and the colocalisation of SST-positive interneurons (SST-INs) with amyloid-β plaques, leading to cell death. In this theoretical review, I propose a molecular model for the pathogenesis of AD based on SST-IN hypofunction and hyperactivity. Namely, hypofunctional and hyperactive SST-INs struggle to control hyperactivity in medial regions in early stages, leading to axonal Aβ production through excessive presynaptic GABAB inhibition, GABAB1a/APP complex downregulation and internalisation. Concomitantly, excessive SST-14 release accumulates near SST-INs in the form of amyloids, which bind to Aβ to form toxic mixed oligomers. This leads to differential SST-IN death through excitotoxicity, further disinhibition, SST deficits, and increased Aβ release, fibrillation and plaque formation. Aβ plaques, hyperactive networks and SST-IN distributions thereby tightly overlap in the brain. Conversely, chronic stimulation of postsynaptic SST2/4 on gulutamatergic neurons by hyperactive SST-INs promotes intense Mitogen-Activated Protein Kinase (MAPK) p38 activity, leading to somatodendritic p-tau staining and apoptosis/neurodegeneration - in agreement with a near complete overlap between p38 and neurofibrillary tangles. This model is suitable to explain some of the principal risk factors and markers of AD progression, including mitochondrial dysfunction, APOE4 genotype, sex-dependent vulnerability, overactive glial cells, dystrophic neurites, synaptic/spine losses, inter alia. Finally, the model can also shed light on qualitative aspects of AD neuropsychology, especially within the domains of spatial and declarative (episodic, semantic) memory, under an overlying pattern of contextual indiscrimination, ensemble instability, interference and generalisation.
Collapse
Affiliation(s)
- Victor N Almeida
- Institute of Psychiatry, Faculty of Medicine, University of São Paulo (USP), Brazil; Faculty of Languages, Federal University of Minas Gerais (UFMG), Brazil.
| |
Collapse
|
8
|
Fessel J. Personalized, Precision Medicine to Cure Alzheimer's Dementia: Approach #1. Int J Mol Sci 2024; 25:3909. [PMID: 38612719 PMCID: PMC11012190 DOI: 10.3390/ijms25073909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
The goal of the treatment for Alzheimer's dementia (AD) is the cure of dementia. A literature review revealed 18 major elements causing AD and 29 separate medications that address them. For any individual with AD, one is unlikely to discern which major causal elements produced dementia. Thus, for personalized, precision medicine, all causal elements must be treated so that each individual patient will have her or his causal elements addressed. Twenty-nine drugs cannot concomitantly be administered, so triple combinations of drugs taken from that list are suggested, and each triple combination can be administered sequentially, in any order. Ten combinations given over 13 weeks require 2.5 years, or if given over 26 weeks, they require 5.0 years. Such sequential treatment addresses all 18 elements and should cure dementia. In addition, any comorbid risk factors for AD whose first presence or worsening was within ±1 year of when AD first appeared should receive appropriate, standard treatment together with the sequential combinations. The article outlines a randomized clinical trial that is necessary to assess the safety and efficacy of the proposed treatments; it includes a triple-drug Rx for equipoise. Clinical trials should have durations of both 2.5 and 5.0 years unless the data safety monitoring board (DSMB) determines earlier success or futility since it is uncertain whether three or six months of treatment will be curative in humans, although studies in animals suggest that the briefer duration of treatment might be effective and restore defective neural tracts.
Collapse
Affiliation(s)
- Jeffrey Fessel
- Clinical Medicine, Department of Medicine, University of California, 2069 Filbert Street, San Francisco, CA 94123, USA
| |
Collapse
|
9
|
Bohnen JLB, Wigstrom TP, Griggs AM, Roytman S, Paalanen RR, Andrews HA, Bohnen NI, Franklin JJH, McInnis MG. Ketogenic-Mimicking Diet as a Therapeutic Modality for Bipolar Disorder: Biomechanistic Rationale and Protocol for a Pilot Clinical Trial. Nutrients 2023; 15:3068. [PMID: 37447394 PMCID: PMC10346691 DOI: 10.3390/nu15133068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
There is growing interest in the investigation of ketogenic diets as a potential therapy for bipolar disorder. The overlapping pharmacotherapies utilized for both bipolar disorder and seizures suggest that a mechanistic overlap may exist between these conditions, with fasting and the ketogenic diet representing the most time-proven therapies for seizure control. Recently, preliminary evidence has begun to emerge supporting a potential role for ketogenic diets in treating bipolar disorder. Notably, some patients may struggle to initiate a strict diet in the midst of a mood episode or significant life stressors. The key question addressed by this pilot clinical trial protocol is if benefits can be achieved with a less restrictive diet, as this would allow such an intervention to be accessible for more patients. Recent development of so-called ketone esters, that once ingested is converted to natural ketone bodies, combined with low glycemic index dietary changes has the potential to mimic two foundational components of therapeutic ketosis: high levels of ketones and minimal spiking of glucose/insulin. This pilot clinical trial protocol thus aims to investigate the effect of a 'ketogenic-mimicking diet' (combining supplementation of ketone esters with a low glycemic index dietary intervention) on neural network stability, mood, and biomarker outcomes in the setting of bipolar disorder. Positive findings obtained via this pilot clinical trial protocol may support future target engagement studies of ketogenic-mimicking diets or related ketogenic interventions. A lack of positive findings, in contrast, may justify a focus on more strict dietary interventions for future research.
Collapse
Affiliation(s)
| | | | - Alexis M. Griggs
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
| | - Stiven Roytman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | - Nicolaas I. Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Melvin G. McInnis
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
- Heinz C. Prechter Bipolar Research Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
10
|
Tang Y, Yan Y, Mao J, Ni J, Qing H. The hippocampus associated GABAergic neural network impairment in early-stage of Alzheimer's disease. Ageing Res Rev 2023; 86:101865. [PMID: 36716975 DOI: 10.1016/j.arr.2023.101865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/13/2023] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease (AD) is the commonest neurodegenerative disease with slow progression. Pieces of evidence suggest that the GABAergic system is impaired in the early stage of AD, leading to hippocampal neuron over-activity and further leading to memory and cognitive impairment in patients with AD. However, the precise impairment mechanism of the GABAergic system on the pathogenesis of AD is still unclear. The impairment of neural networks associated with the GABAergic system is tightly associated with AD. Therefore, we describe the roles played by hippocampus-related GABAergic circuits and their impairments in AD neuropathology. In addition, we give our understand on the process from GABAergic circuit impairment to cognitive and memory impairment, since recent studies on astrocyte in AD plays an important role behind cognition dysfunction caused by GABAergic circuit impairment, which helps better understand the GABAergic system and could open up innovative AD therapy.
Collapse
Affiliation(s)
- Yuanhong Tang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yan Yan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Mao
- Zhengzhou Tobacco Institute of China National Tobacco Company, Zhengzhou 450001, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; Department of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China.
| |
Collapse
|
11
|
Perone I, Ghena N, Wang J, Mackey C, Wan R, Malla S, Gorospe M, Cheng A, Mattson MP. Mitochondrial SIRT3 Deficiency Results in Neuronal Network Hyperexcitability, Accelerates Age-Related Aβ Pathology, and Renders Neurons Vulnerable to Aβ Toxicity. Neuromolecular Med 2023; 25:27-39. [PMID: 35749057 PMCID: PMC9810471 DOI: 10.1007/s12017-022-08713-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 01/05/2023]
Abstract
Aging is the major risk factor for Alzheimer's disease (AD). Mitochondrial dysfunction and neuronal network hyperexcitability are two age-related alterations implicated in AD pathogenesis. We found that levels of the mitochondrial protein deacetylase sirtuin-3 (SIRT3) are significantly reduced, and consequently mitochondria protein acetylation is increased in brain cells during aging. SIRT3-deficient mice exhibit robust mitochondrial protein hyperacetylation and reduced mitochondrial mass during aging. Moreover, SIRT3-deficient mice exhibit epileptiform and burst-firing electroencephalogram activity indicating neuronal network hyperexcitability. Both aging and SIRT3 deficiency result in increased sensitivity to kainic acid-induced seizures. Exposure of cultured cerebral cortical neurons to amyloid β-peptide (Aβ) results in a reduction in SIRT3 levels and SIRT3-deficient neurons exhibit heightened sensitivity to Aβ toxicity. Finally, SIRT3 haploinsufficiency in middle-aged App/Ps1 double mutant transgenic mice results in a significant increase in Aβ load compared with App/Ps1 double mutant mice with normal SIRT3 levels. Collectively, our findings suggest that SIRT3 plays an important role in protecting neurons against Aβ pathology and excitotoxicity.
Collapse
Affiliation(s)
- Isabella Perone
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Nathaniel Ghena
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Jing Wang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
- Department of Integrative Medicine and Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chelsea Mackey
- Department of Integrative Medicine and Neurobiology, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Laboratory of Cardiovascular Science, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Ruiqian Wan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Sulochan Malla
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA
| | - Aiwu Cheng
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA.
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA.
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, 21224, USA.
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Černotová D, Hrůzová K, Levčík D, Svoboda J, Stuchlík A. Linking Social Cognition, Parvalbumin Interneurons, and Oxytocin in Alzheimer's Disease: An Update. J Alzheimers Dis 2023; 96:861-875. [PMID: 37980658 PMCID: PMC10741376 DOI: 10.3233/jad-230333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 11/21/2023]
Abstract
Finding a cure for Alzheimer's disease (AD) has been notoriously challenging for many decades. Therefore, the current focus is mainly on prevention, timely intervention, and slowing the progression in the earliest stages. A better understanding of underlying mechanisms at the beginning of the disease could aid in early diagnosis and intervention, including alleviating symptoms or slowing down the disease progression. Changes in social cognition and progressive parvalbumin (PV) interneuron dysfunction are among the earliest observable effects of AD. Various AD rodent models mimic these early alterations, but only a narrow field of study has considered their mutual relationship. In this review, we discuss current knowledge about PV interneuron dysfunction in AD and emphasize their importance in social cognition and memory. Next, we propose oxytocin (OT) as a potent modulator of PV interneurons and as a promising treatment for managing some of the early symptoms. We further discuss the supporting evidence on its beneficial effects on AD-related pathology. Clinical trials have employed the use of OT in various neuropsychiatric diseases with promising results, but little is known about its prospective impacts on AD. On the other hand, the modulatory effects of OT in specific structures and local circuits need to be clarified in future studies. This review highlights the connection between PV interneurons and social cognition impairment in the early stages of AD and considers OT as a promising therapeutic agent for addressing these early deficits.
Collapse
Affiliation(s)
- Daniela Černotová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karolína Hrůzová
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - David Levčík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Svoboda
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Stuchlík
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
13
|
Xiong Y, Ye C, Sun R, Chen Y, Zhong X, Zhang J, Zhong Z, Chen H, Huang M. Disrupted Balance of Gray Matter Volume and Directed Functional Connectivity in Mild Cognitive Impairment and Alzheimer's Disease. Curr Alzheimer Res 2023; 20:161-174. [PMID: 37278043 PMCID: PMC10514512 DOI: 10.2174/1567205020666230602144659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/11/2023] [Accepted: 04/04/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND Alterations in functional connectivity have been demonstrated in Alzheimer's disease (AD), an age-progressive neurodegenerative disorder that affects cognitive function; however, directional information flow has never been analyzed. OBJECTIVE This study aimed to determine changes in resting-state directional functional connectivity measured using a novel approach, granger causality density (GCD), in patients with AD, and mild cognitive impairment (MCI) and explore novel neuroimaging biomarkers for cognitive decline detection. METHODS In this study, structural MRI, resting-state functional magnetic resonance imaging, and neuropsychological data of 48 Alzheimer's Disease Neuroimaging Initiative participants were analyzed, comprising 16 patients with AD, 16 with MCI, and 16 normal controls. Volume-based morphometry (VBM) and GCD were used to calculate the voxel-based gray matter (GM) volumes and directed functional connectivity of the brain. We made full use of voxel-based between-group comparisons of VBM and GCD values to identify specific regions with significant alterations. In addition, Pearson's correlation analysis was conducted between directed functional connectivity and several clinical variables. Furthermore, receiver operating characteristic (ROC) analysis related to classification was performed in combination with VBM and GCD. RESULTS In patients with cognitive decline, abnormal VBM and GCD (involving inflow and outflow of GCD) were noted in default mode network (DMN)-related areas and the cerebellum. GCD in the DMN midline core system, hippocampus, and cerebellum was closely correlated with the Mini- Mental State Examination and Functional Activities Questionnaire scores. In the ROC analysis combining VBM with GCD, the neuroimaging biomarker in the cerebellum was optimal for the early detection of MCI, whereas the precuneus was the best in predicting cognitive decline progression and AD diagnosis. CONCLUSION Changes in GM volume and directed functional connectivity may reflect the mechanism of cognitive decline. This discovery could improve our understanding of the pathology of AD and MCI and provide available neuroimaging markers for the early detection, progression, and diagnosis of AD and MCI.
Collapse
Affiliation(s)
- Yu Xiong
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Chenghui Ye
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ruxin Sun
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Ying Chen
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Xiaochun Zhong
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Jiaqi Zhang
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Zhanhua Zhong
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Hongda Chen
- Department of Traditional Chinese Medicine, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| | - Min Huang
- Department of Neurology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong 518107, China
| |
Collapse
|
14
|
Almeida VN, Radanovic M. Semantic processing and neurobiology in Alzheimer's disease and Mild Cognitive Impairment. Neuropsychologia 2022; 174:108337. [DOI: 10.1016/j.neuropsychologia.2022.108337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/17/2022] [Accepted: 07/17/2022] [Indexed: 11/28/2022]
|
15
|
Chou YH, Sundman M, Ton That V, Green J, Trapani C. Cortical excitability and plasticity in Alzheimer's disease and mild cognitive impairment: A systematic review and meta-analysis of transcranial magnetic stimulation studies. Ageing Res Rev 2022; 79:101660. [PMID: 35680080 DOI: 10.1016/j.arr.2022.101660] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique. When stimulation is applied over the primary motor cortex and coupled with electromyography measures, TMS can probe functions of cortical excitability and plasticity in vivo. The purpose of this meta-analysis is to evaluate the utility of TMS-derived measures for differentiating patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) from cognitively normal older adults (CN). METHODS Databases searched included PubMed, Embase, APA PsycInfo, Medline, and CINAHL Plus from inception to July 2021. RESULTS Sixty-one studies with a total of 2728 participants (1454 patients with AD, 163 patients with MCI, and 1111 CN) were included. Patients with AD showed significantly higher cortical excitability, lower cortical inhibition, and impaired cortical plasticity compared to the CN cohorts. Patients with MCI exhibited increased cortical excitability and reduced plasticity compared to the CN cohort. Additionally, lower cognitive performance was significantly associated with higher cortical excitability and lower inhibition. No seizure events due to TMS were reported, and the mild adverse response rate is approximately 3/1000 (i.e., 9/2728). CONCLUSIONS Findings of our meta-analysis demonstrate the potential of using TMS-derived cortical excitability and plasticity measures as diagnostic biomarkers and therapeutic targets for AD and MCI.
Collapse
Affiliation(s)
- Ying-Hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA; Evelyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, USA.
| | - Mark Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Viet Ton That
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Jacob Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| | - Chrisopher Trapani
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA
| |
Collapse
|
16
|
Latimer CS, Stair JG, Hincks JC, Currey HN, Bird TD, Keene CD, Kraemer BC, Liachko NF. TDP-43 promotes tau accumulation and selective neurotoxicity in bigenic Caenorhabditis elegans. Dis Model Mech 2022; 15:275149. [PMID: 35178571 PMCID: PMC9066518 DOI: 10.1242/dmm.049323] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/11/2022] [Indexed: 11/20/2022] Open
Abstract
Although amyloid β (Aβ) and tau aggregates define the neuropathology of Alzheimer's disease (AD), TDP-43 has recently emerged as a co-morbid pathology in more than half of patients with AD. Individuals with concomitant Aβ, tau and TDP-43 pathology experience accelerated cognitive decline and worsened brain atrophy, but the molecular mechanisms of TDP-43 neurotoxicity in AD are unknown. Synergistic interactions among Aβ, tau and TDP-43 may be responsible for worsened disease outcomes. To study the biology underlying this process, we have developed new models of protein co-morbidity using the simple animal Caenorhabditis elegans. We demonstrate that TDP-43 specifically enhances tau but not Aβ neurotoxicity, resulting in neuronal dysfunction, pathological tau accumulation and selective neurodegeneration. Furthermore, we find that synergism between tau and TDP-43 is rescued by loss-of-function of the robust tau modifier sut-2. Our results implicate enhanced tau neurotoxicity as the primary driver underlying worsened clinical and neuropathological phenotypes in AD with TDP-43 pathology, and identify cell-type specific sensitivities to co-morbid tau and TDP-43. Determining the relationship between co-morbid TDP-43 and tau is crucial to understand, and ultimately treat, mixed pathology AD.
Collapse
Affiliation(s)
- Caitlin S. Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Jade G. Stair
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Joshua C. Hincks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Heather N. Currey
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA
| | - Thomas D. Bird
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Department of Neurology, University of Washington, Seattle, WA 98104, USA,Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Brian C. Kraemer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA,Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA
| | - Nicole F. Liachko
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington, Seattle, WA 98104, USA,Author for correspondence ()
| |
Collapse
|
17
|
Söderbom G. Status and future directions of clinical trials in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:153-188. [PMID: 32739003 DOI: 10.1016/bs.irn.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Novel therapies are needed to treat Parkinson's disease (PD) in which the clinical unmet need is pressing. Currently, no clinically available therapeutic strategy can either retard or reverse PD or repair its pathological consequences. l-DOPA (levodopa) is still the gold standard therapy for motor symptoms yet symptomatic therapies for both motor and non-motor symptoms are improving. Many on-going, intervention trials cover a broad range of targets, including cell replacement and gene therapy approaches, quality of life improving technologies, and disease-modifying strategies (e.g., controlling aberrant α-synuclein accumulation and regulating cellular/neuronal bioenergetics). Notably, the repurposing of glucagon-like peptide-1 analogues with potential disease-modifying effects based on metabolic pathology associated with PD has been promising. Nevertheless, there is a clear need for improved therapeutic and diagnostic options, disease progression tracking and patient stratification capabilities to deliver personalized treatment and optimize trial design. This review discusses some of the risk factors and consequent pathology associated with PD and particularly the metabolic aspects of PD, novel therapies targeting these pathologies (e.g., mitochondrial and lysosomal dysfunction, oxidative stress, and inflammation/neuroinflammation), including the repurposing of metabolic therapies, and unmet needs as potential drivers for future clinical trials and research in PD.
Collapse
|