1
|
Percuoco V, Herlin E, Prada F, Riva M, Pessina F, Staartjes VE, Della Pepa GM, Menna G. Glioblastoma invasion patterns from a clinical perspective-a systematic review. Neurosurg Rev 2024; 47:864. [PMID: 39570467 PMCID: PMC11582338 DOI: 10.1007/s10143-024-02944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 11/22/2024]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary brain tumor. Despite advances in treatment, mechanisms underlying GBM invasion remain incompletely understood. This systematic review synthesizes findings from laboratory and clinical studies to elucidate the molecular mechanisms driving GBM invasion and their implications for prognosis and therapy. This review adhered to PRISMA guidelines, conducting a comprehensive search of PubMed/Medline for studies published up to October 16, 2023. Inclusion criteria focused on studies investigating molecular mechanisms of GBM invasiveness with reported clinical outcomes (overall survival (OS) and progression-free survival (PFS). Exclusion criteria included systematic reviews, case reports, small case series, and studies limited to preclinical data. Risk of bias was assessed using the ROBINS-I tool. From 831 records, 21 studies (2198 patients) met the criteria. Key GBM invasion mechanisms included ECM degradation, vascular invasion, EMT, apoptotic regulation, cytoskeletal organization, and RNA sequencing. Vascular mechanisms were most studied. Bevacizumab resistance linked to poorer outcomes. EMT markers like TWIST and ECM degradation via MMPs such as CD147 correlated with decreased survival. Cytoskeletal and RNA studies highlighted the prognostic significance of tumor subtypes and microenvironmental interactions. This systematic review elucidates the molecular mechanisms underlying GBM invasiveness and their clinical implications. Integrating molecular profiling into routine clinical assessment may enhance prognostic accuracy and therapeutic efficacy, paving the way for personalized treatment strategies.
Collapse
Affiliation(s)
- Veronica Percuoco
- Department of Neurosurgery, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8091, Zurich, Switzerland.
| | - Erica Herlin
- Faculty of Medicine and Surgery, University of Milan, Via Festa del Perdono, 7, 20122, Milan, Italy
| | - Francesco Prada
- Focused Ultrasound Foundation, 1230 Cedars Ct Suite 206, Charlottesville, VA, 22903, USA
| | - Marco Riva
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano Via Alessandro Manzoni, 56, 20089, Rozzano (MI), Italy
| | - Federico Pessina
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano Via Alessandro Manzoni, 56, 20089, Rozzano (MI), Italy
| | - Victor E Staartjes
- Machine Intelligence in Clinical Neuroscience & Microsurgical Neuroanatomy (MICN) Laboratory, Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zürich, Switzerland
| | - Giuseppe Maria Della Pepa
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| | - Grazia Menna
- Department of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Largo A. Gemelli 8, 00168, Rome, Italy
| |
Collapse
|
2
|
Li C, Li Z, Zhang M, Dai J, Wang Y, Zhang Z. An overview of Twist1 in glioma progression and recurrence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 172:285-301. [PMID: 37833014 DOI: 10.1016/bs.irn.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Glioma cells are characterized by high migration ability, resulting in the aggressive growth of the tumors and poor prognosis of patients. Epithelial-to-mesenchymal transition (EMT) is one of the most important steps for tumor migration and metastasis and be elevated during glioma progression and recurrence. Twist1 is a basic helix-loop-helix transcription factor and a key transcription factor involved in the process of EMT. Twist1 is related to glioma mesenchymal change, invasion, heterogeneity, self-renewal of tumor stem cells, angiogenesis, etc., and may be used as a prognostic indicator and therapeutic target for glioma patients. This paper mainly reviews the structural characteristics, regulatory mechanisms, and apparent regulation of Twist1, as well as the roles of Twist1 during glioma progression and recurrence, providing new revelations for its use as a potential drug target and glioma treatment research.
Collapse
Affiliation(s)
- Cong Li
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Zixuan Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Mengyi Zhang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Jiaxuan Dai
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China
| | - Yunmin Wang
- The Jining City Center Blood Station, Jining, Shandong Province, P.R. China.
| | - Zhiqiang Zhang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province Hospital of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, P.R. China.
| |
Collapse
|
3
|
Maddison K, Faulkner S, Graves MC, Fay M, Bowden NA, Tooney PA. Vasculogenic Mimicry Occurs at Low Levels in Primary and Recurrent Glioblastoma. Cancers (Basel) 2023; 15:3922. [PMID: 37568738 PMCID: PMC10417556 DOI: 10.3390/cancers15153922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Vasculogenic mimicry (VM), the ability of tumour cells to form functional microvasculature without an endothelial lining, may contribute to anti-angiogenic treatment resistance in glioblastoma. We aimed to assess the extent of VM formation in primary and recurrent glioblastomas and to determine whether VM vessels also express prostate-specific membrane antigen (PSMA), a pathological vessel marker. Formalin-fixed paraffin-embedded tissue from 35 matched pairs of primary and recurrent glioblastoma was immunohistochemically labelled for PSMA and CD34 and stained with periodic acid-Schiff (PAS). Vascular structures were categorised as endothelial vessels (CD34+/PAS+) or VM (CD34-/PAS+). Most blood vessels in both primary and recurrent tumours were endothelial vessels, and these significantly decreased in recurrent tumours (p < 0.001). PSMA was expressed by endothelial vessels, and its expression was also decreased in recurrent tumours (p = 0.027). VM was observed in 42.86% of primary tumours and 28.57% of recurrent tumours. VM accounted for only a small proportion of the tumour vasculature and VM density did not differ between primary and recurrent tumours (p = 0.266). The functional contribution of VM and its potential as a treatment target in glioblastoma require further investigation.
Collapse
Affiliation(s)
- Kelsey Maddison
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (K.M.); (S.F.); (P.A.T.)
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Sam Faulkner
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (K.M.); (S.F.); (P.A.T.)
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
| | - Moira C. Graves
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Michael Fay
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
- GenesisCare, Lake Macquarie Private Hospital, Gateshead, NSW 2290, Australia
| | - Nikola A. Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
- School of Medicine and Public Health, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Paul A. Tooney
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW 2308, Australia; (K.M.); (S.F.); (P.A.T.)
- Mark Hughes Foundation Centre for Brain Cancer Research, The University of Newcastle, Callaghan, NSW 2308, Australia; (M.C.G.); (M.F.)
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
4
|
Niu ZS, Wang WH, Niu XJ. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J Gastroenterol 2022; 28:6433-6477. [PMID: 36569275 PMCID: PMC9782839 DOI: 10.3748/wjg.v28.i46.6433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
Hepatectomy is currently considered the most effective option for treating patients with early and intermediate hepatocellular carcinoma (HCC). Unfortunately, the postoperative prognosis of patients with HCC remains unsatisfactory, predominantly because of high postoperative metastasis and recurrence rates. Therefore, research on the molecular mechanisms of postoperative HCC metastasis and recurrence will help develop effective intervention measures to prevent or delay HCC metastasis and recurrence and to improve the long-term survival of HCC patients. Herein, we review the latest research progress on the molecular mechanisms underlying postoperative HCC metastasis and recurrence to lay a foundation for improving the understanding of HCC metastasis and recurrence and for developing more precise prevention and intervention strategies.
Collapse
Affiliation(s)
- Zhao-Shan Niu
- Laboratory of Micromorphology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Wen-Hong Wang
- Department of Pathology, School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Xiao-Jun Niu
- Department of Internal Medicine, Qingdao Shibei District People's Hospital, Qingdao 266033, Shandong Province, China
| |
Collapse
|
5
|
Recent Advances in Glioma Therapy: Combining Vascular Normalization and Immune Checkpoint Blockade. Cancers (Basel) 2021; 13:cancers13153686. [PMID: 34359588 PMCID: PMC8345045 DOI: 10.3390/cancers13153686] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GBM) accounts for more than 50% of all primary malignancies of the brain. Current standard treatment regimen for GBM includes maximal surgical resection followed by radiation and adjuvant chemotherapy. However, due to the heterogeneity of the tumor cells, tumor recurrence is often inevitable. The prognosis of patients with glioma is, thus, dismal. Glioma is a highly angiogenic tumor yet immunologically cold. As such, evolving studies have focused on designing strategies that specifically target the tyrosine kinase receptors of angiokines and encourage immune infiltration. Recent promising results from immunotherapies on other cancer types have prompted further investigations of this therapy in GBM. In this article, we reviewed the pathological angiogenesis and immune reactivity in glioma, as well as its target for drug development, and we discussed future directions in glioma therapy.
Collapse
|
6
|
Treps L, Faure S, Clere N. Vasculogenic mimicry, a complex and devious process favoring tumorigenesis – Interest in making it a therapeutic target. Pharmacol Ther 2021; 223:107805. [DOI: 10.1016/j.pharmthera.2021.107805] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|