1
|
Zhou CJ, Wang DH, Kong XW, Han Z, Hao X, Wang XY, Wen X, Liang CG. Protein regulator of cytokinesis 1 regulates chromosome dynamics and cytoplasmic division during mouse oocyte meiotic maturation and early embryonic development. FEBS J 2021; 287:5130-5147. [PMID: 32562308 DOI: 10.1111/febs.15458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022]
Abstract
In contrast to the homeokinesis of mitosis, asymmetric division of cytoplasm is the conspicuous feature of meiosis in mammalian oocytes. Protein regulator of cytokinesis 1 (PRC1) is an important regulator during mitotic spindle assembly and cytoplasmic division, but its functions in oocyte meiosis and early embryo development have not been fully elucidated. In this study, we detected PRC1 expression and localization and revealed a nuclear, spindle midzone-related dynamic pattern throughout meiotic and mitotic progressions. Treatment of oocytes with the reagents taxol or nocodazole disturbed the distribution of PRC1 in metaphase II oocytes. Further, PRC1 depletion led to failure of first polar body (PB1) extrusion and spindle migration, aneuploidy and defective kinetochore-microtubule attachment and spindle assembly. Overexpression of PRC1 resulted in PB1 extrusion failure, aneuploidy and serious defects of spindle assembly. To investigate PRC1 function in early embryos, we injected Prc1 morpholino into zygotes and 2-cell stage embryos. Depletion of PRC1 in zygotes impaired 4-cell, morula and blastocyst formation. Loss of PRC1 in single or double blastomeres in 2-cell stage embryos significantly impaired cell division, indicating its indispensable role in early embryo development. Co-immunoprecipitation showed that PRC1 interacts with polo-like kinase 1 (PLK1), and functional knockdown and rescue experiments demonstrated that PRC1 recruits PLK1 to the spindle midzone to regulate cytoplasmic division during meiosis. Finally, kinesin family member 4 knockdown downregulates PRC1 expression and leads to PRC1 localization failure. Taken together, our data suggest PRC1 plays an important role during oocyte maturation and early embryonic development by regulating chromosome dynamics and cytoplasmic division.
Collapse
Affiliation(s)
- Cheng-Jie Zhou
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Dong-Hui Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China.,Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Sichuan Academy of Giant Panda, Chengdu, Sichuan Province, China
| | - Xiang-Wei Kong
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Zhe Han
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xin Hao
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xing-Yue Wang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Xin Wen
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| | - Cheng-Guang Liang
- State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, Hohhot, China
| |
Collapse
|
2
|
Maruyama Y, Sugawa M, Yamaguchi S, Davies T, Osaki T, Kobayashi T, Yamagishi M, Takeuchi S, Mishima M, Yajima J. CYK4 relaxes the bias in the off-axis motion by MKLP1 kinesin-6. Commun Biol 2021; 4:180. [PMID: 33568771 PMCID: PMC7876049 DOI: 10.1038/s42003-021-01704-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Centralspindlin, a complex of the MKLP1 kinesin-6 and CYK4 GAP subunits, plays key roles in metazoan cytokinesis. CYK4-binding to the long neck region of MKLP1 restricts the configuration of the two MKLP1 motor domains in the centralspindlin. However, it is unclear how the CYK4-binding modulates the interaction of MKLP1 with a microtubule. Here, we performed three-dimensional nanometry of a microbead coated with multiple MKLP1 molecules on a freely suspended microtubule. We found that beads driven by dimeric MKLP1 exhibited persistently left-handed helical trajectories around the microtubule axis, indicating torque generation. By contrast, centralspindlin, like monomeric MKLP1, showed similarly left-handed but less persistent helical movement with occasional rightward movements. Analysis of the fluctuating helical movement indicated that the MKLP1 stochastically makes off-axis motions biased towards the protofilament on the left. CYK4-binding to the neck domains in MKLP1 enables more flexible off-axis motion of centralspindlin, which would help to avoid obstacles along crowded spindle microtubules. Analysing the 3D movement of MKLP1 motors, Maruyama et al. find that dimeric C. elegans MKLP1 drives a left-handed helical motion around the microtubule with minimum protofilament switching to the right side whereas less persistent motions are driven by monomers or by heterotetramers with CYK4. These findings suggest how obstacles along crowded spindle microtubules may be avoided by CYK4 binding to MKLP1.
Collapse
Affiliation(s)
- Yohei Maruyama
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Mitsuhiro Sugawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.,Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shin Yamaguchi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Tim Davies
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.,Department of Biosciences, Durham University, Durham, UK
| | - Toshihisa Osaki
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Takuya Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Masahiko Yamagishi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan.,Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo, Japan.,Research Center for complex Systems Biology, The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Masanori Mishima
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK.
| | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan. .,Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo, Japan. .,Research Center for complex Systems Biology, The University of Tokyo, Meguro-ku, Tokyo, Japan.
| |
Collapse
|