1
|
Kretov DA, Folkes L, Mora-Martin A, Walawalkar IA, Imrat, Syedah N, Vanuytsel K, Moxon S, Murphy GJ, Cifuentes D. The miR-144/Hmgn2 regulatory axis orchestrates chromatin organization during erythropoiesis. Nat Commun 2024; 15:3821. [PMID: 38714702 PMCID: PMC11076586 DOI: 10.1038/s41467-024-47982-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 04/17/2024] [Indexed: 05/10/2024] Open
Abstract
Differentiation of stem and progenitor cells is a highly regulated process that involves the coordinated action of multiple layers of regulation. Here we show how the post-transcriptional regulatory layer instructs the level of chromatin regulation via miR-144 and its targets to orchestrate chromatin condensation during erythropoiesis. The loss of miR-144 leads to impaired chromatin condensation during erythrocyte maturation. Among the several targets of miR-144 that influence chromatin organization, the miR-144-dependent regulation of Hmgn2 is conserved from fish to humans. Our genetic probing of the miR-144/Hmgn2 regulatory axis establish that intact miR-144 target sites in the Hmgn2 3'UTR are necessary for the proper maturation of erythrocytes in both zebrafish and human iPSC-derived erythroid cells while loss of Hmgn2 rescues in part the miR-144 null phenotype. Altogether, our results uncover miR-144 and its target Hmgn2 as the backbone of the genetic regulatory circuit that controls the terminal differentiation of erythrocytes in vertebrates.
Collapse
Affiliation(s)
- Dmitry A Kretov
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Leighton Folkes
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Alexandra Mora-Martin
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Isha A Walawalkar
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Imrat
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Noreen Syedah
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kim Vanuytsel
- Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Hematology and Oncology, Department of Medicine, Boston Medical Center, Boston, MA, USA
- Amyloidosis Center, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, USA
| | - Simon Moxon
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - George J Murphy
- Center for Regenerative Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Section of Hematology and Oncology, Department of Medicine, Boston Medical Center, Boston, MA, USA
| | - Daniel Cifuentes
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
- Department of Virology, Immunology and Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
Kretov DA, Folkes L, Mora-Martin A, Syedah N, Walawalkar IA, Vanyustel K, Moxon S, Murphy GJ, Cifuentes D. The miR-144/Hmgn2 regulatory axis orchestrates chromatin organization during erythropoiesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549576. [PMID: 37503141 PMCID: PMC10370056 DOI: 10.1101/2023.07.18.549576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Differentiation of stem and progenitor cells is a highly regulated process that involves the coordinated action of multiple layers of regulation. Here we show how the post-transcriptional regulatory layer instructs the level of chromatin regulation via miR-144 and its targets to orchestrate chromatin condensation during erythropoiesis. The loss of miR-144 leads to impaired chromatin condensation during erythrocyte maturation. Among the several targets of miR-144 that influence chromatin organization, the miR-144-dependent regulation of Hmgn2 is conserved from fish to humans. Our genetic probing of the miR-144/Hmgn2 regulatory axis established that intact miR-144 target sites in the Hmgn2 3'UTR are necessary for the proper maturation of erythrocytes in both zebrafish and human iPSC-derived erythroid cells while loss of Hmgn2 rescues in part the miR-144 null phenotype. Altogether, our results uncover miR-144 and its target Hmgn2 as the backbone of the genetic regulatory circuit that controls the terminal differentiation of erythrocytes in vertebrates.
Collapse
|
3
|
Ding Y, Liu F. Protocol for isolation and ATAC-seq library construction of zebrafish red blood cells. STAR Protoc 2022; 3:101889. [PMID: 36595911 PMCID: PMC9700001 DOI: 10.1016/j.xpro.2022.101889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 11/04/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding chromatin dynamics in red blood cells (RBCs) is critical for exploring the differentiation process and homeostasis maintenance during erythropoiesis. Here, we describe a protocol for isolation of zebrafish erythrocytes labelled with gata1:dsRed by fluorescence-activated cell sorting. We detail steps for ATAC-seq library construction from the isolated RBCs and describe how to analyze the quality of the library. The library can then be used to assay genome-wide chromatin accessibility in these RBCs. For complete details on the use and execution of this protocol, please refer to Ding et al. (2021).1.
Collapse
Affiliation(s)
- Yanyan Ding
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Beijing, China,School of Life Sciences, Shandong University, Qingdao, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, University of Chinese Academy of Sciences, Beijing, China,School of Life Sciences, Shandong University, Qingdao, China,Corresponding author
| |
Collapse
|
4
|
Bergo V, Trompouki E. New tools for 'ZEBRA-FISHING'. Brief Funct Genomics 2021:elab001. [PMID: 33605988 DOI: 10.1093/bfgp/elab001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/14/2020] [Accepted: 01/04/2021] [Indexed: 11/14/2022] Open
Abstract
Zebrafish has been established as a classical model for developmental studies, yet in the past years, with the explosion of novel technological methods, the use of zebrafish as a model has expanded. One of the prominent fields that took advantage of zebrafish as a model organism early on is hematopoiesis, the process of blood cell generation from hematopoietic stem and progenitor cells (HSPCs). In zebrafish, HSPCs are born early during development in the aorta-gonad-mesonephros region and then translocate to the caudal hematopoietic tissue, where they expand and finally take residence in the kidney marrow. This journey is tightly regulated at multiple levels from extracellular signals to chromatin. In order to delineate the mechanistic underpinnings of this process, next-generation sequencing techniques could be an important ally. Here, we describe genome-wide approaches that have been undertaken to delineate zebrafish hematopoiesis.
Collapse
|
5
|
Peters MJ, Parker SK, Grim J, Allard CAH, Levin J, Detrich HW. Divergent Hemogen genes of teleosts and mammals share conserved roles in erythropoiesis: analysis using transgenic and mutant zebrafish. Biol Open 2018; 7:bio.035576. [PMID: 30097520 PMCID: PMC6124579 DOI: 10.1242/bio.035576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hemogen is a vertebrate transcription factor that performs important functions in erythropoiesis and testicular development and may contribute to neoplasia. Here we identify zebrafish Hemogen and show that it is considerably smaller (∼22 kDa) than its human ortholog (∼55 kDa), a striking difference that is explained by an underlying modular structure. We demonstrate that Hemogens are largely composed of 21-25 amino acid repeats, some of which may function as transactivation domains (TADs). Hemogen expression in embryonic and adult zebrafish is detected in hematopoietic, renal, neural and gonadal tissues. Using Tol2- and CRISPR/Cas9-generated transgenic zebrafish, we show that Hemogen expression is controlled by two Gata1-dependent regulatory sequences that act alone and together to control spatial and temporal expression during development. Partial depletion of Hemogen in embryos by morpholino knockdown reduces the number of erythrocytes in circulation. CRISPR/Cas9-generated zebrafish lines containing either a frameshift mutation or an in-frame deletion in a putative, C-terminal TAD display anemia and embryonic tail defects. This work expands our understanding of Hemogen and provides mutant zebrafish lines for future study of the mechanism of this important transcription factor. Summary: Transgenic and mutant zebrafish lines were created to characterize the expression and functions of Hemogen, a transcription factor involved in the formation of red blood cells and other processes.
Collapse
Affiliation(s)
- Michael J Peters
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Sandra K Parker
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Jeffrey Grim
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Corey A H Allard
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - Jonah Levin
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| | - H William Detrich
- Department of Marine and Environmental Sciences, Northeastern University, Nahant, MA 01908, USA
| |
Collapse
|