1
|
Pragati, Sarkar S. Reinstated Activity of Human Tau-induced Enhanced Insulin Signaling Restricts Disease Pathogenesis by Regulating the Functioning of Kinases/Phosphatases and Tau Hyperphosphorylation in Drosophila. Mol Neurobiol 2024; 61:982-1001. [PMID: 37674037 DOI: 10.1007/s12035-023-03599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023]
Abstract
Tauopathies such as Alzheimer's disease (AD), Frontotemporal dementia, and parkinsonism linked to chromosome 17 (FTDP-17), etc. are characterized by tau hyperphosphorylation and distinguished accumulation of paired helical filaments (PHFs)/or neurofibrillary tangles (NFTs) in a specific-neuronal subset of the brain. Among different reported risk factors, type 2 diabetes (T2D) has gained attention due to its correlation with tau pathogenesis. However, mechanistic details and the precise contribution of insulin pathway in tau etiology is still debatable. We demonstrate that expression of human tau causes overactivation of insulin pathway in Drosophila disease models. We subsequently noted that tissue-specific downregulation of insulin signaling or even exclusive reduction of its growth-promoting sub-branch effectively reinstates the overactivated insulin signaling pathway in human tau expressing cells, which in turn restricts pathogenic tau hyperphosphorylation and aggregate formation. It was further noted that restored tau phosphorylation was achieved due to a reestablished balance between the levels of different kinase(s) (GSK3β and ERK/P38 MAP kinase) and phosphatase (PP2A). Taken together, our study demonstrates a precise involvement of the insulin pathway and associated molecular events in the pathogenesis of human tauopathies in Drosophila, which will be immensely helpful in developing novel therapeutic options against these devastating human brain disorders. Moreover, our study reveals an interesting link between tau etiology and aberrant insulin signaling, which is a characteristic feature of Type 2 Diabetes.
Collapse
Affiliation(s)
- Pragati
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
2
|
Tello JA, Williams HE, Eppler RM, Steinhilb ML, Khanna M. Animal Models of Neurodegenerative Disease: Recent Advances in Fly Highlight Innovative Approaches to Drug Discovery. Front Mol Neurosci 2022; 15:883358. [PMID: 35514431 PMCID: PMC9063566 DOI: 10.3389/fnmol.2022.883358] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
Neurodegenerative diseases represent a formidable challenge to global health. As advances in other areas of medicine grant healthy living into later decades of life, aging diseases such as Alzheimer's disease (AD) and other neurodegenerative disorders can diminish the quality of these additional years, owed largely to the lack of efficacious treatments and the absence of durable cures. Alzheimer's disease prevalence is predicted to more than double in the next 30 years, affecting nearly 15 million Americans, with AD-associated costs exceeding $1 billion by 2050. Delaying onset of AD and other neurodegenerative diseases is critical to improving the quality of life for patients and reducing the burden of disease on caregivers and healthcare systems. Significant progress has been made to model disease pathogenesis and identify points of therapeutic intervention. While some researchers have contributed to our understanding of the proteins and pathways that drive biological dysfunction in disease using in vitro and in vivo models, others have provided mathematical, biophysical, and computational technologies to identify potential therapeutic compounds using in silico modeling. The most exciting phase of the drug discovery process is now: by applying a target-directed approach that leverages the strengths of multiple techniques and validates lead hits using Drosophila as an animal model of disease, we are on the fast-track to identifying novel therapeutics to restore health to those impacted by neurodegenerative disease.
Collapse
Affiliation(s)
- Judith A. Tello
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
| | - Haley E. Williams
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
| | - Robert M. Eppler
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - Michelle L. Steinhilb
- Department of Biology, Central Michigan University, Mount Pleasant, MI, United States
| | - May Khanna
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
- Center of Innovation in Brain Science, Tucson, AZ, United States
- Department of Molecular Pathobiology, New York University, New York, NY, United States
| |
Collapse
|
3
|
Sarkar S. Shaggy functions downstream of dMyc and their concurrent downregulation confers additive rescue against tau toxicity in Drosophila. Biofactors 2021; 47:461-477. [PMID: 33651466 DOI: 10.1002/biof.1721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Neurodegenerative tauopathies such as Alzheimer's and Parkinson's diseases are characterized by hyperphosphorylation of tau protein and their subsequent aggregation in the forms of paired helical filaments and/or neurofibrillary tangles in specific areas of the brain. Despite several attempts, it remains a challenge to develop reliable biomarkers or effective drugs against tauopathies. It is increasingly evident now that due to the involvement of multiple cellular cascades affected by the pathogenic tau molecules, a single genetic modifier or a molecule is unlikely to be efficient enough to provide an inclusive rescue. Hence, multitargets based combinatorial approach(s) have been suggested to provide an efficient rescue against tauopathies. We have reported earlier that targeted downregulation of dmyc (a Drosophila homolog of human cmyc proto-oncogene) restricts tau etiology by limiting tau hyperphosphorylation and heterochromatin loss. Although, dmyc generates a significant rescue; however, it is not proficient enough to provide a complete alleviation against tauopathies. Here, we report that tissue-specific concurrent downregulation of dmyc and gsk3β conveys a near-complete rescue against tau toxicity in Drosophila. We noted that combinatorial downregulation of dmyc and gsk3β reduces tau hyperphosphorylation, restricts the formation of neurofibrillary tangles, and restores heterochromatin loss to the physiological level. Our subsequent investigations revealed that dmyc regulates gsk3β via protein phosphatase 2A (dPP2A) in a dose-dependent manner to regulate tau pathogenesis. We propose that dmyc and gsk3β candidates can be utilized in a synergistic manner for the development of an efficient combinatorial therapeutic approach against the devastating human tauopathies.
Collapse
Affiliation(s)
- Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
4
|
Nisha, Sarkar S. Downregulation of glob1 suppresses pathogenesis of human neuronal tauopathies in Drosophila by regulating tau phosphorylation and ROS generation. Neurochem Int 2021; 146:105040. [PMID: 33865914 DOI: 10.1016/j.neuint.2021.105040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/30/2022]
Abstract
Human tauopathies represent a group of neurodegenerative disorders, characterized by abnormal hyperphosphorylation and aggregation of tau protein, which ultimately cause neurodegeneration. The aberrant tau hyperphosphorylation is mostly attributed to the kinases/phosphatases imbalance, which is majorly contributed by the generation of reactive oxygen species (ROS). Globin(s) represent a well-conserved group of proteins which are involved in O2 management, regulation of cellular ROS in different cell types. Similarly, Drosophila globin1 (a homologue of human globin) with its known roles in oxygen management and development of nervous system exhibits striking similarities with the mammalian neuroglobin. Several recent evidences support the hypothesis that neuroglobins are associated with Alzheimer's disease pathogenesis. We herein noted that targeted expression of human-tau induces the cellular level of Glob1 protein in Drosophila tauopathy models. Subsequently, RNAi mediated restored level of Glob1 restricts the pathogenic effect of human-tau by minimizing its hyperphosphorylation via GSK-3β/p-Akt and p-JNK pathways. In addition, it also activates the Nrf2-keap1-ARE cascade to stabilize the tau-mediated increased level of ROS. These two parallel cellular events provide a significant rescue against human tau-mediated neurotoxicity in the fly models. For the first time we report a direct involvement of an oxygen sensing globin gene in tau etiology. In view of the fact that human genome encodes for the multiple Globin proteins including a nervous system specific neuroglobin; and therefore, our findings may pave the way to investigate if the conserved oxygen sensing globin gene(s) can be exploited in devising novel therapeutic strategies against tauopathies.
Collapse
Affiliation(s)
- Nisha
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
5
|
Losev Y, Frenkel-Pinter M, Abu-Hussien M, Viswanathan GK, Elyashiv-Revivo D, Geries R, Khalaila I, Gazit E, Segal D. Differential effects of putative N-glycosylation sites in human Tau on Alzheimer's disease-related neurodegeneration. Cell Mol Life Sci 2021; 78:2231-2245. [PMID: 32926180 PMCID: PMC11072875 DOI: 10.1007/s00018-020-03643-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/13/2020] [Accepted: 09/04/2020] [Indexed: 12/21/2022]
Abstract
Amyloid assemblies of Tau are associated with Alzheimer's disease (AD). In AD Tau undergoes several abnormal post-translational modifications, including hyperphosphorylation and glycosylation, which impact disease progression. N-glycosylated Tau was reported to be found in AD brain tissues but not in healthy counterparts. This is surprising since Tau is a cytosolic protein whereas N-glycosylation occurs in the ER-Golgi. Previous in vitro studies indicated that N-glycosylation of Tau facilitated its phosphorylation and contributed to maintenance of its Paired Helical Filament structure. However, the specific Tau residue(s) that undergo N-glycosylation and their effect on Tau-engendered pathology are unknown. High-performance liquid chromatography and mass spectrometry (LC-MS) analysis indicated that both N359 and N410 were N-glycosylated in wild-type (WT) human Tau (hTau) expressed in human SH-SY5Y cells. Asparagine to glutamine mutants, which cannot undergo N-glycosylation, at each of three putative N-glycosylation sites in hTau (N167Q, N359Q, and N410Q) were generated and expressed in SH-SY5Y cells and in transgenic Drosophila. The mutants modulated the levels of hTau phosphorylation in a site-dependent manner in both cell and fly models. Additionally, N359Q ameliorated, whereas N410Q exacerbated various aspects of hTau-engendered neurodegeneration in transgenic flies.
Collapse
Affiliation(s)
- Yelena Losev
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Moran Frenkel-Pinter
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Malak Abu-Hussien
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Guru Krishnakumar Viswanathan
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Donna Elyashiv-Revivo
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Rana Geries
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Isam Khalaila
- Department of Biotechnology Engineering, Ben-Gurion University of Negev, 84105, Beer Sheva, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
- Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel.
- Sagol Interdisciplinary School of Neuroscience, Tel Aviv University, Ramat Aviv, 6997801, Tel Aviv, Israel.
| |
Collapse
|
6
|
Aqsa, Sarkar S. Age dependent trans-cellular propagation of human tau aggregates in Drosophila disease models. Brain Res 2020; 1751:147207. [PMID: 33212022 DOI: 10.1016/j.brainres.2020.147207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 11/26/2022]
Abstract
Tauopathies is a class of neurodegenerative disorders which involves the transformation of physiological tau into pathogenic tau. One of the prime causes reported to drive this conversion is tau hyperphosphorylation and the subsequent propagation of pathogenic protein aggregates across the nervous system. Although past attempts have been made to deduce the details of tau propagation, yet not much is known about its mechanism. A better understanding of this aspect of disease pathology can prove to be beneficial for the development of diagnostic and therapeutic approaches. For the first time, we demonstrate that the human tau possesses an intrinsic property to spread trans-cellularly in the fly nervous system irrespective of the tau allele or the neuronal tissue type. Aggregate migration restricted by targeted down-regulation of a specific kinase, elucidates the role of hyper-phosphorylation in its movement. On the contrary to the previous models, our study delivers an easy and rapid in-vivo model for comprehensive examination of tau migration pathology. Henceforth, the developed model would not only be immensely helpful in uncovering the mechanistic in-depths of tau propagation pathology but also aid in modifier and/or drug screening for amelioration of tauopathies.
Collapse
Affiliation(s)
- Aqsa
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110 021, India
| | - Surajit Sarkar
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110 021, India.
| |
Collapse
|
7
|
Krishnaswamy S, Huang HW, Marchal IS, Ryoo HD, Sigurdsson EM. Neuronally expressed anti-tau scFv prevents tauopathy-induced phenotypes in Drosophila models. Neurobiol Dis 2020; 137:104770. [PMID: 31982516 DOI: 10.1016/j.nbd.2020.104770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/10/2020] [Accepted: 01/23/2020] [Indexed: 01/20/2023] Open
Abstract
We have derived single-chain variable fragments (scFv) from tau antibody hybridomas and previously shown their promise as imaging diagnostic agents. Here, we examined the therapeutic potential of anti-tau scFv in transgenic Drosophila models that express in neurons wild-type (WT) human tau (htau) or the human tauopathy mutation R406W. scFv expressing flies were crossed with the tauopathy flies and analyzed. Overall, the survival curves differed significantly (p < .0001). Control flies not expressing htau survived the longest, whereas R406W expressing flies had the shortest lifespan, which was greatly prolonged by co-expressing the anti-tau scFv (p < .0001). Likewise, htau WT expressing flies had a moderately short lifespan, which was prolonged by co-expressing the anti-tau scFv (p < .01). In addition, the htau expression impaired wing expansion after eclosion (p < .0001), and caused progressive abdomen expansion (p < .0001). These features were more severe in htau R406W flies than in htau WT flies. Importantly, both phenotypes were prevented by co-expression of the anti-tau scFv (p < .01-0.0001). Lastly, brain analyses revealed scFv-mediated tau clearance (p < .05-0.01), and its prevention of tau-mediated neurotoxicity (p < .05-0.001). In summary, these findings support the therapeutic potential of an anti-tau scFv, including as gene therapies, and the use of Drosophila models for such screening.
Collapse
Affiliation(s)
- Senthilkumar Krishnaswamy
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, United States of America
| | - Huai-Wei Huang
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States of America
| | - Isabella S Marchal
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, United States of America
| | - Hyung Don Ryoo
- Department of Cell Biology, New York University School of Medicine, New York, NY 10016, United States of America.
| | - Einar M Sigurdsson
- Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, United States of America; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, United States of America; Neuroscience Institute, New York University School of Medicine, New York, NY 10016, United States of America.
| |
Collapse
|
8
|
Reduced expression of dMyc mitigates TauV337M mediated neurotoxicity by preventing the Tau hyperphosphorylation and inducing autophagy in Drosophila. Neurosci Lett 2020; 715:134622. [DOI: 10.1016/j.neulet.2019.134622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/30/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
|
9
|
Papanikolopoulou K, Mudher A, Skoulakis E. An assessment of the translational relevance of Drosophila in drug discovery. Expert Opin Drug Discov 2019; 14:303-313. [PMID: 30664368 DOI: 10.1080/17460441.2019.1569624] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Drosophila melanogaster offers a powerful expedient and economical system with facile genetics. Because of the high sequence and functional conservation with human disease-associated genes, it has been cardinal in deciphering disease mechanisms at the genetic and molecular level. Drosophila are amenable to and respond well to pharmaceutical treatment which coupled to their genetic tractability has led to discovery, repositioning, and validation of a number of compounds. Areas covered: This review summarizes the generation of fly models of human diseases, their advantages and use in elucidation of human disease mechanisms. Representative studies provide examples of the utility of this system in modeling diseases and the discovery, repositioning and testing on pharmaceuticals to ameliorate them. Expert opinion: Drosophila offers a facile and economical whole animal system with many homologous organs to humans, high functional conservation and established methods of generating and validating human disease models. Nevertheless, it remains relatively underused as a drug discovery tool probably because its relevance to mammalian systems remains under question. However, recent exciting success stories using Drosophila disease models for drug screening, repositioning and validation strongly suggest that fly models should figure prominently in the drug discovery pipeline from bench to bedside.
Collapse
Affiliation(s)
- Katerina Papanikolopoulou
- a Division of Neuroscience , Biomedical Sciences Research Centre "Alexander Fleming" , Vari , Greece
| | - Amrit Mudher
- b Centre for Biological Sciences , University of Southampton , Southampton , UK
| | - Efthimios Skoulakis
- a Division of Neuroscience , Biomedical Sciences Research Centre "Alexander Fleming" , Vari , Greece
| |
Collapse
|
10
|
Cinnamaldehyde Improves Lifespan and Healthspan in Drosophila melanogaster Models for Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3570830. [PMID: 30228985 PMCID: PMC6136480 DOI: 10.1155/2018/3570830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
Abstract
Cinnamon extract has been reported to have positive effects in fruit fly and mouse models for Alzheimer's disease (AD). However, cinnamon contains numerous potential active compounds that have not been individually evaluated. The main objective of this study was to evaluate the impact of cinnamaldehyde, a known putative active compound in cinnamon, on the lifespan and healthspan of Drosophila melanogaster models for Alzheimer's disease, which overexpress Aβ42 and MAPT (Tau). We found that cinnamaldehyde significantly improved the lifespan of both AD and non-AD flies. Cinnamaldehyde also improved the healthspan of AD flies overexpressing the Tau protein by improving climbing ability, evaluated by rapid iterative negative geotaxis (RING), and improving short-term memory, evaluated by a courtship conditioning assay. Cinnamaldehyde had no positive impact on the healthspan of AD flies overexpressing the Aβ42 protein.
Collapse
|