1
|
Tavares DF, Mano JF, Oliveira MB. Advances in abiotic tissue-based biomaterials: A focus on decellularization and devitalization techniques. Mater Today Bio 2025; 32:101735. [PMID: 40275948 PMCID: PMC12020859 DOI: 10.1016/j.mtbio.2025.101735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/14/2025] [Accepted: 04/05/2025] [Indexed: 04/26/2025] Open
Abstract
This Review explores the growing and diversifying field of tissue-derived abiotic constructs for tissue engineering applications, with main focus on decellularization and devitalization techniques and principles. Acellular fractions derived from biological tissues, such as the extracellular matrix (ECM), have long been considered a valuable approach for the generation of numerous scaffolds and more complex constructs. The removal of the cellular content has been considered essential to prevent the development of adverse immunological reactions. Nevertheless, the discovery of promising features of certain cellular components has sparked interest in the use of inactivated or devitalized cellular fractions for several applications, particularly in regenerative medicine and inflammation control. Devitalization has been described for several clinical applications, but remains poorly explored in terms of in vitro constructs compared to decellularization methods currently available. In this review, we present and critically evaluate a spectrum of approaches for the decellularization of whole-organs and in vitro constructs, and the most prevalent devitalization techniques, with a discussion on their implications on scaffolds composition, structure, and potentially therapeutic properties. Processing methodologies to achieve optimal cell-based abiotic materials and approaches for their effective characterization are described and discussed. The application of these materials in healthcare, with most focus on regenerative approaches and including examples of commercially available products, is also addressed.
Collapse
Affiliation(s)
- Diana F. Tavares
- Department of Chemistry, CICECO – Aveiro Institute of Materials. University of Aveiro., Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João F. Mano
- Department of Chemistry, CICECO – Aveiro Institute of Materials. University of Aveiro., Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana B. Oliveira
- Department of Chemistry, CICECO – Aveiro Institute of Materials. University of Aveiro., Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
2
|
Wirtz MK, Sykes R, Samples J, Edmunds B, Choi D, Keene DR, Tufa SF, Sun YY, Keller KE. Identification of Missense Extracellular Matrix Gene Variants in a Large Glaucoma Pedigree and Investigation of the N700S Thrombospondin-1 Variant in Normal and Glaucomatous Trabecular Meshwork Cells. Curr Eye Res 2022; 47:79-90. [PMID: 34143713 PMCID: PMC8733052 DOI: 10.1080/02713683.2021.1945109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE Primary open-angle glaucoma (POAG) is a complex heterogeneous disease. While several POAG genes have been identified, a high proportion of estimated heritability remains unexplained. Elevated intraocular pressure (IOP) is a leading POAG risk factor and dysfunctional extracellular matrix (ECM) in the trabecular meshwork (TM) contributes to elevated IOP. In this study, we sought to identify missense variants in ECM genes that correlate with ocular hypertensive POAG. METHODS Whole-genome sequencing was used to identify genetic variants in five members of a large POAG family (n = 68) with elevated IOP. The remaining family members were screened by Sanger sequencing. Unrelated normal (NTM) and glaucomatous (GTM) cells were sequenced for the identified variants. The ECM protein levels were determined by Western immunoblotting and confocal and electron microscopy investigated ECM ultrastructural organization. RESULTS Three ECM gene variants were significantly associated with POAG or elevated IOP in a large POAG pedigree. These included rs2228262 (N700S; thrombospondin-1 (THBS1, TSP1)), rs112913396 (D563 G; collagen type VI, alpha 3 (COL6A3)) and rs34759087 (E987K; laminin subunit beta 2 (LAMB2)). Screening of unrelated TM cells (n = 27) showed higher prevalence of the THBS1 variant but not the LAMB2 variant, in GTM cells (39%) than NTM cells (11%). The rare COL6A3 variant was not detected. TSP1 protein was upregulated and COL6A3 was down-regulated in TM cells with N700S subject to mechanical stretch, an in vitro method that mimics elevated IOP. Immunofluorescence showed increased TSP1 immunostaining in cell strains with N700S compared to wild-type TM cells. Ultrastructural studies showed ECM disorganization and altered collagen type VI distribution in GTM versus NTM cells. CONCLUSIONS Our results suggest that missense variants in ECM genes may not cause catastrophic changes to the TM, but over many years, subtle changes in ECM may accumulate and cause structural disorganization of the outflow resistance leading to elevated IOP in POAG patients.
Collapse
Affiliation(s)
- Mary K. Wirtz
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
| | - Renee Sykes
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
| | | | - Beth Edmunds
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
| | - Dongseok Choi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239.,OHSU-PSU School of Public Health Oregon Health & Science University, Portland, OR 97239.,Graduate School of Dentistry, Kyung Hee University, Seoul, Korea
| | | | - Sara F. Tufa
- Shriners Hospitals for Children, Portland, OR 97239
| | - Ying Ying Sun
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239
| | - Kate E. Keller
- Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239.,Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239.,To whom correspondence should be addressed: 503 494 2366,
| |
Collapse
|
3
|
Shojaie L, Rahimi Y, Zolbin MM, Daghigh F, Kajbafzadeh AM. Characterization Methods of Acellularized Tissue and Organs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:1-6. [PMID: 34582009 DOI: 10.1007/978-3-030-82735-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The extracellular matrix (ECM) of mammalian organs and tissues has been applied as a substitute scaffold to simplify the restoration and reconstruction of several tissues. Such scaffolds are prepared in various arrangements including sheets, powders, and hydrogels. One of the more applicable processes is using natural scaffolds, for this purpose discarded tissues or organs are naturally derived by processes that comprised decellularization of following tissues or organs. Protection of the complex structure and 3D (three dimensional) ultrastructure of the ECM is extremely necessary but it is predictable that all protocols of decellularization end in disruption of the architecture and potential loss of surface organization and configuration. Tissue decellularization with conservation of ECM bioactivity and integrity can be improved by providing well-designed protocols regarding the agents and decellularization techniques operated during processing. An overview of the characterization of decellularized scaffolds and the role of reagnets can validate the applied methods' efficacy.
Collapse
Affiliation(s)
- Layla Shojaie
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medicine Division of GI/Liver Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Yekta Rahimi
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Faezeh Daghigh
- Department of Physiology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.,Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Section of Tissue Engineering and Stem Cells Therapy, Children's Hospital Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran. .,, No. 62, Dr. Gharib's Street, Keshavarz Boulevard, (PANNEK, #6), 1419433151, Tehran, Iran.
| |
Collapse
|
4
|
Collagen IV α345 dysfunction in glomerular basement membrane diseases. III. A functional framework for α345 hexamer assembly. J Biol Chem 2021; 296:100592. [PMID: 33775696 PMCID: PMC8099640 DOI: 10.1016/j.jbc.2021.100592] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/11/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
We identified a genetic variant, an 8-residue appendage, of the α345 hexamer of collagen IV present in patients with glomerular basement membrane diseases, Goodpasture’s disease and Alport syndrome, and determined the long-awaited crystal structure of the hexamer. We sought to elucidate how variants cause glomerular basement membrane disease by exploring the mechanism of the hexamer assembly. Chloride ions induced in vitro hexamer assembly in a composition-specific manner in the presence of equimolar concentrations of α3, α4, and α5 NC1 monomers. Chloride ions, together with sulfilimine crosslinks, stabilized the assembled hexamer. Furthermore, the chloride ion–dependent assembly revealed the conformational plasticity of the loop-crevice-loop bioactive sites, a critical property underlying bioactivity and pathogenesis. We explored the native mechanism by expressing recombinant α345 miniprotomers in the cell culture and characterizing the expressed proteins. Our findings revealed NC1-directed trimerization, forming protomers inside the cell; hexamerization, forming scaffolds outside the cell; and a Cl gradient–signaled hexamerization. This assembly detail, along with a crystal structure, provides a framework for understanding hexamer dysfunction. Restoration of the native conformation of bioactive sites and α345 hexamer replacement are prospective approaches to therapeutic intervention.
Collapse
|
5
|
Ma C, Jing Y, Li H, Wang K, Wang Z, Xu C, Sun X, Kaji D, Han X, Huang A, Feng J. Scx Lin cells directly form a subset of chondrocytes in temporomandibular joint that are sharply increased in Dmp1-null mice. Bone 2021; 142:115687. [PMID: 33059101 PMCID: PMC7749445 DOI: 10.1016/j.bone.2020.115687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/16/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
It has been assumed that the secondary cartilage in the temporomandibular joint (TMJ), which is the most complex and mystery joint and expands rapidly after birth, is formed by periochondrium-derived chondrocytes. The TMJ condyle has rich attachment sites of tendon, which is thought to be solely responsible for joint movement with a distinct cell lineage. Here, we used a Scx-Cre ERT2 mouse line (the tracing line for progenitor and mature tendon cells) to track the fate of tendon cells during TMJ postnatal growth. Our data showed a progressive differentiation of Scx lineage cells started at tendon and the fibrous layer, to cells at the prechondroblasts (Sox9 -/Col I +), and then to cells at the chondrocytic layer (Sox9 +/Col I -). Importantly, the Scx + chondrocytes remained as "permanent" chondrocytes to maintain cartilage mass with no further cell trandifferentiation to bone cells. This notion was substantiated in an assessment of these cells in Dmp1 -null mice (a hypophosphatemic rickets model), where there was a significant increase in the number of Scx lineage cells in response to hypophosphatemia. In addition, we showed the origin of disc, which is derived from Scx + cells. Thus, we propose Scx lineage cells play an important role in TMJ postnatal growth by forming the disc and a new subset of Scx + chondrocytes that do not undergo osteogenesis as the Scx - chondrocytes and are sensitive to the level of phosphorous.
Collapse
Affiliation(s)
- Chi Ma
- Department of Orthopaedic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yan Jing
- Department of Orthodontics, Texas A&M College of Dentistry, Dallas, TX, USA
- Corresponding authors Yan Jing, Assistant professor, Department of Orthodontics, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707237, Jian Feng, Professor, Department of Biomedical sciences, Texas A&M College of Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707235
| | - Hui Li
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Ke Wang
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Zheng Wang
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Chunmei Xu
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
| | - Xiaolin Sun
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA; Zhongshan Affiliated Hospital of Dalian University, Dalian, China
| | - Deepak Kaji
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Xianglong Han
- Department of Orthodontics & Pediatric Dentistry, West China School of Stomatology, State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China
| | - Alice Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Jian Feng
- Department of Biomedical Sciences, Texas A&M College of Dentistry, Dallas, TX, USA
- Corresponding authors Yan Jing, Assistant professor, Department of Orthodontics, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707237, Jian Feng, Professor, Department of Biomedical sciences, Texas A&M College of Dentistry, Texas A&M College of Dentistry, 3302 Gaston Ave, Dallas, Tx, USA, , 2143707235
| |
Collapse
|
6
|
Xu M, Liu J, Sun J, Xu X, Hu Y, Liu B. Optical Microscopy and Electron Microscopy for the Morphological Evaluation of Tendons: A Mini Review. Orthop Surg 2020; 12:366-371. [PMID: 32096911 PMCID: PMC7189050 DOI: 10.1111/os.12637] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/17/2022] Open
Abstract
The morphological characteristics of tendons have been thoroughly evaluated via microscopy. Optical microscopy and electron microscopy are the most commonly used techniques for tendon tissue observation. According to the principles of both microscopy types, preparation and evaluation methods vary. Simple optical microscopy is commonly used in the observation of cells and extracellular matrix, and many stains, including hematoxylin–eosin, Van Gieson, Prussian blue, Alcian blue, and toluidine blue, are used for evaluating cells, collagen fiber arrangement, and noncollagenous proteins. Histological scoring systems have been used in many studies for semi‐quantification. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are the most commonly used electron microscopy types, and special consideration is needed for the fixation and embedding protocols. Glutaraldehyde followed by osmium is most commonly used in the chemical fixation of tendon tissue, followed by epoxy resin embedment. Longitudinal sections captured in SEM images show the arrangement of collagen fibrils and the cells and lipid drops among them, while cross sections captured in TEM images show the diameter and distribution of collagen fibrils. SEM and TEM are used together for comprehensive evaluations. This mini review is focused on the preparation methodology and related evaluation indexes for the morphological evaluation of tendons.
Collapse
Affiliation(s)
- Mingyou Xu
- Graduate School, Tianjin Medical University, Tianjin, China.,Department of Orthopedic Oncology, Tianjin Hospital, Tianjin, China
| | - Jie Liu
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jiayi Sun
- Center for Medical Device Evaluation NMPA, Beijing, China
| | - Xinrong Xu
- Analytical and Testing Center, South China University of Technology, Guangzhou, China
| | - Yongcheng Hu
- Department of Orthopedic Oncology, Tianjin Hospital, Tianjin, China
| | - Bin Liu
- Center for Medical Device Evaluation NMPA, Beijing, China
| |
Collapse
|
7
|
Tan GK, Pryce BA, Stabio A, Brigande JV, Wang C, Xia Z, Tufa SF, Keene DR, Schweitzer R. Tgfβ signaling is critical for maintenance of the tendon cell fate. eLife 2020; 9:52695. [PMID: 31961320 PMCID: PMC7025861 DOI: 10.7554/elife.52695] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Studies of cell fate focus on specification, but little is known about maintenance of the differentiated state. In this study, we find that the mouse tendon cell fate requires continuous maintenance in vivo and identify an essential role for TGFβ signaling in maintenance of the tendon cell fate. To examine the role of TGFβ signaling in tenocyte function the TGFβ type II receptor (Tgfbr2) was targeted in the Scleraxis-expressing cell lineage using the ScxCre deletor. Tendon development was not disrupted in mutant embryos, but shortly after birth tenocytes lost differentiation markers and reverted to a more stem/progenitor state. Viral reintroduction of Tgfbr2 to mutants prevented and even rescued tenocyte dedifferentiation suggesting a continuous and cell autonomous role for TGFβ signaling in cell fate maintenance. These results uncover the critical importance of molecular pathways that maintain the differentiated cell fate and a key role for TGFβ signaling in these processes.
Collapse
Affiliation(s)
- Guak-Kim Tan
- Research Division, Shriners Hospital for Children, Portland, United States
| | - Brian A Pryce
- Research Division, Shriners Hospital for Children, Portland, United States
| | - Anna Stabio
- Research Division, Shriners Hospital for Children, Portland, United States
| | - John V Brigande
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, United States
| | - ChaoJie Wang
- Computational Biology Program, Oregon Health & Science University, Portland, United States
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, United States
| | - Sara F Tufa
- Research Division, Shriners Hospital for Children, Portland, United States
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, United States
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, United States.,Department of Orthopedics, Oregon Health & Science University, Portland, United States
| |
Collapse
|
8
|
Twaroski K, Eide C, Riddle MJ, Xia L, Lees CJ, Chen W, Mathews W, Keene DR, McGrath JA, Tolar J. Revertant mosaic fibroblasts in recessive dystrophic epidermolysis bullosa. Br J Dermatol 2019; 181:1247-1253. [PMID: 30924923 DOI: 10.1111/bjd.17943] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Revertant mosaicism has been described previously in recessive dystrophic epidermolysis bullosa (RDEB), manifesting as regions of skin with normal mechanical and biological characteristics. Here we report the discovery of revertant dermal fibroblasts, unique in that all other documented cases of revertant mosaicism occur in epidermal keratinocytes. OBJECTIVES To determine the cause of revertant mosaicism found in a patient with RDEB from isolated epidermal keratinocytes and dermal fibroblasts in blister and mosaic skin regions. METHODS Skin biopsies were taken from blister and mosaic skin regions of a patient with RDEB. Allele identification was confirmed and the type VII collagen (C7) content and COL7A1 expression profile of isolated keratinocytes and fibroblasts was determined. RESULTS Keratinocytes isolated from the mosaic area had a slight increase in C7, although overall expression of COL7A1 was unchanged between blister and mosaic fibroblasts. Differential allele expression was identified in blister and mosaic fibroblasts using targeted RNA sequencing (TREx), where the allele harbouring a point mutation was preferentially expressed over that containing a frameshift mutation. A crossing over event was identified in mosaic fibroblasts that was not present in blister fibroblasts, yielding a functional COL7A1 allele in a subset of cells. CONCLUSIONS In documenting a novel case of revertant mosaicism in RDEB, we have identified dermal fibroblasts as having the capacity to correct blistering functionally. We have also pioneered the use of TREx in quantifying allele-specific expression. Using fibroblasts instead of keratinocytes for RDEB therapies offers advantages in the local and systemic therapy of RDEB. What's already known about this topic? Revertant mosaicism has been previously documented in patients with recessive dystrophic epidermolysis bullosa (RDEB), however, it has only been found in epidermal keratinocytes. What does this study add? We have demonstrated that COL7A1 gene reversion in dermal fibroblasts occurs and is able to form functional skin in a patient with RDEB. Additionally, we have pioneered a new application for targeted RNA sequencing in quantifying allele-specific expression in fibroblasts and keratinocytes. What is the translational message? This opens up possibilities for using fibroblasts as local and systemic therapy for patients with RDEB.
Collapse
Affiliation(s)
| | - C Eide
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN, U.S.A
| | - M J Riddle
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN, U.S.A
| | - L Xia
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN, U.S.A
| | - C J Lees
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN, U.S.A
| | | | - W Mathews
- Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN, U.S.A
| | - D R Keene
- Shriners Hospital for Children, Medical Genetics and Biochemistry & Molecular Biology, Oregon Health & Science University, Portland, OR, U.S.A
| | - J A McGrath
- St. John's Institute of Dermatology, King's College London, London, U.K
| | - J Tolar
- Stem Cell Institute and.,Department of Pediatrics, Division of Blood and Marrow Transplantation, Medical School, University of Minnesota, Minneapolis, MN, U.S.A
| |
Collapse
|
9
|
Keene DR, Tufa SF. Connective Tissue Ultrastructure: A Direct Comparison between Conventional Specimen Preparation and High-Pressure Freezing/Freeze-Substitution. Anat Rec (Hoboken) 2019; 303:1514-1526. [PMID: 31251834 DOI: 10.1002/ar.24211] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/28/2018] [Accepted: 01/18/2019] [Indexed: 11/11/2022]
Abstract
It is generally agreed within the microscopy community that the quality of ultrastructure within the connective tissue matrix resulting from high-pressure freezing followed by freeze-substitution (HPF/FS) far exceeds that gained following the "conventional" preparation method, which includes aqueous fixation, dehydration, and embedding. Exposure to cryogen at high pressure is the only cryopreservation method capable of vitrifying tissue structure to a depth exceeding 200 μm. Cells within connective tissues prepared by HPF/FS are universally larger, filling the commonly seen void at the juncture between cell and matrix. Without significant shrinkage of cells and the coincident extraction of the cytosolic components, well-resolved organelles are less clustered within an expanded cytosol. Much of the artifact from "conventional" methods occurs as large space filling and also smaller fibril-associated proteoglycans are extracted during fixation. However, the visualization of some matrix features by electron microscopy is actually dependent on the collapse or extraction of these "masking" components. Herein, we argue that an impression of ultrastructure within commonly studied matrices, in particular skin, is best gained following the evaluation of both conventional preparations and tissue prepared by HPF/FS. Anat Rec, 2019. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Douglas R Keene
- Shriners Hospital for Children Micro-Imaging Center, Portland, Oregon.,Department of Biomechanical Engineering, Oregon Health Sciences University, Portland, Oregon.,Department of Medical Genetics, Oregon Health Sciences University, Portland, Oregon
| | - Sara F Tufa
- Shriners Hospital for Children Micro-Imaging Center, Portland, Oregon
| |
Collapse
|