Li J, Ha S, Li Z, Huang Y, Lin E, Xiao W. Aurora B prevents aneuploidy via MAD2 during the first mitotic cleavage in oxidatively damaged embryos.
Cell Prolif 2019;
52:e12657. [PMID:
31264311 PMCID:
PMC6797512 DOI:
10.1111/cpr.12657]
[Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/07/2019] [Accepted: 05/27/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES
A high rate of chromosome aneuploidy is exhibited in in vitro fertilization (IVF)-derived embryos. Our previous experiments suggested that reactive oxygen species (ROS) can activate Mad2, a key protein in the spindle assembly checkpoint (SAC), and delay the first mitotic, providing time to prevent the formation of embryonic aneuploidy. We aimed to determine whether mitotic kinase Aurora B was involved in the SAC function to prevent aneuploidy in IVF-derived embryos.
MATERIALS AND METHODS
We analysed aneuploidy formation and repair during embryo pre-implantation via 4',6-diamidino-2-phenylindole (DAPI) staining and karyotype analysis. We assessed Aurora B activation by immunofluorescence and investigated the effect of Aurora B inhibition on embryo injury-related variables, such as embryonic development, ROS levels, mitochondrial membrane potential and γH2AX-positive expression.
RESULTS
We observed the expression and phosphorylation of Thr232 in Aurora B in oxidative stress-induced zygotes. Moreover, inhibition of Aurora B caused chromosome mis-segregation, abnormal spindle structures, abnormal chromosome number and reduced expression of Mad2 in IVF embryos. Our results suggest that Aurora B causes mitotic arrest and participates in SAC via Mad2 and H3S10P, which is required for self-correction of aneuploidies.
CONCLUSIONS
We demonstrate here that oxidative stress-induced DNA damage triggers Aurora B-mediated activation of SAC, which prevents aneuploidy at the first mitotic cleavage in early mouse IVF embryos.
Collapse