1
|
Turan FB, Ercan ME, Firat-Karalar EN. A Chemically Inducible Organelle Rerouting Assay to Probe Primary Cilium Assembly, Maintenance, and Disassembly in Cultured Cells. Methods Mol Biol 2024; 2725:55-78. [PMID: 37856017 DOI: 10.1007/978-1-0716-3507-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The primary cilium is a conserved, microtubule-based organelle that protrudes from the surface of most vertebrate cells as well as sensory cells of many organisms. It transduces extracellular chemical and mechanical cues to regulate diverse cellular processes during development and physiology. Loss-of-function studies via RNA interference and CRISPR/Cas9-mediated gene knockouts have been the main tool for elucidating the functions of proteins, protein complexes, and organelles implicated in cilium biology. However, these methods are limited in studying acute spatiotemporal functions of proteins as well as the connection between their cellular positioning and functions. A powerful approach based on inducible recruitment of plus or minus end-directed molecular motors to the protein of interest enables fast and precise control of protein activity in time and in space. In this chapter, we present a chemically inducible heterodimerization method for functional perturbation of centriolar satellites, an emerging membrane-less organelle involved in cilium biogenesis and function. The method we present is based on rerouting of centriolar satellites to the cell center or the periphery in mammalian epithelial cells. We also describe how this method can be applied to study the temporal functions of centriolar satellites during primary cilium assembly, maintenance, and disassembly.
Collapse
Affiliation(s)
- F Basak Turan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - M Erdem Ercan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey.
- Koc University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
2
|
Caillaud MC. Tools for studying the cytoskeleton during plant cell division. TRENDS IN PLANT SCIENCE 2022; 27:1049-1062. [PMID: 35667969 DOI: 10.1016/j.tplants.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The plant cytoskeleton regulates fundamental biological processes, including cell division. How to experimentally perturb the cytoskeleton is a key question if one wants to understand the role of both actin filaments (AFs) and microtubules (MTs) in a given biological process. While a myriad of mutants are available, knock-out in cytoskeleton regulators, when nonlethal, often produce little or no phenotypic perturbation because such regulators are often part of a large family, leading to functional redundancy. In this review, alternative techniques to modify the plant cytoskeleton during plant cell division are outlined. The different pharmacological and genetic approaches already developed in cell culture, transient assays, or in whole organisms are presented. Perspectives on the use of optogenetics to perturb the plant cytoskeleton are also discussed.
Collapse
Affiliation(s)
- Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, F-69342 Lyon, France.
| |
Collapse
|
3
|
Abstract
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically-encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology"), and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
Collapse
Affiliation(s)
- Peng Tan
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Lian He
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, United States.,Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, Texas, United States
| |
Collapse
|
4
|
Benedetti L. Optogenetic Tools for Manipulating Protein Subcellular Localization and Intracellular Signaling at Organelle Contact Sites. Curr Protoc 2021; 1:e71. [PMID: 33657274 PMCID: PMC7954661 DOI: 10.1002/cpz1.71] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Intracellular signaling processes are frequently based on direct interactions between proteins and organelles. A fundamental strategy to elucidate the physiological significance of such interactions is to utilize optical dimerization tools. These tools are based on the use of small proteins or domains that interact with each other upon light illumination. Optical dimerizers are particularly suitable for reproducing and interrogating a given protein-protein interaction and for investigating a protein's intracellular role in a spatially and temporally precise manner. Described in this article are genetic engineering strategies for the generation of modular light-activatable protein dimerization units and instructions for the preparation of optogenetic applications in mammalian cells. Detailed protocols are provided for the use of light-tunable switches to regulate protein recruitment to intracellular compartments, induce intracellular organellar membrane tethering, and reconstitute protein function using enhanced Magnets (eMags), a recently engineered optical dimerization system. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Genetic engineering strategy for the generation of modular light-activated protein dimerization units Support Protocol 1: Molecular cloning Basic Protocol 2: Cell culture and transfection Support Protocol 2: Production of dark containers for optogenetic samples Basic Protocol 3: Confocal microscopy and light-dependent activation of the dimerization system Alternate Protocol 1: Protein recruitment to intracellular compartments Alternate Protocol 2: Induction of organelles' membrane tethering Alternate Protocol 3: Optogenetic reconstitution of protein function Basic Protocol 4: Image analysis Support Protocol 3: Analysis of apparent on- and off-kinetics Support Protocol 4: Analysis of changes in organelle overlap over time.
Collapse
Affiliation(s)
- Lorena Benedetti
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia
| |
Collapse
|
5
|
Jagrić M, Risteski P, Martinčić J, Milas A, Tolić IM. Optogenetic control of PRC1 reveals its role in chromosome alignment on the spindle by overlap length-dependent forces. eLife 2021; 10:61170. [PMID: 33480356 PMCID: PMC7924949 DOI: 10.7554/elife.61170] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/21/2021] [Indexed: 12/27/2022] Open
Abstract
During metaphase, chromosome position at the spindle equator is regulated by the forces exerted by kinetochore microtubules and polar ejection forces. However, the role of forces arising from mechanical coupling of sister kinetochore fibers with bridging fibers in chromosome alignment is unknown. Here, we develop an optogenetic approach for acute removal of PRC1 to partially disassemble bridging fibers and show that they promote chromosome alignment. Tracking of the plus-end protein EB3 revealed longer antiparallel overlaps of bridging microtubules upon PRC1 removal, which was accompanied by misaligned and lagging kinetochores. Kif4A/kinesin-4 and Kif18A/kinesin-8 were found within the bridging fiber and largely lost upon PRC1 removal, suggesting that these proteins regulate the overlap length of bridging microtubules. We propose that PRC1-mediated crosslinking of bridging microtubules and recruitment of kinesins to the bridging fiber promote chromosome alignment by overlap length-dependent forces transmitted to the associated kinetochore fibers. Before cells divide to create copies of themselves, they need to duplicate their genetic material. To help split their DNA evenly, they build a machine called the mitotic spindle. The mitotic spindle is made of fine, tube-like structures called microtubules, which catch the chromosomes containing the genetic information and line them up at the center of the spindle. Microtubules push and pull the chromosomes by elongating or shortening their tips. But it remains unclear how the microtubules know when the chromosomes have reached center point. One way to find out is to remove proteins that accumulate in the middle of the spindle during division, such as the protein PRC1, which helps to assemble a subset of microtubules called bridging fibers, and the proteins Kif4A and Kif18A, which work like molecular rulers, shortening long microtubules. Usually, scientists would delete one of these proteins to see what impact this has. However, these experiments take days, giving the cell enough time to adapt and thus making it difficult to study the role of each of the proteins. Here, Jagrić, Risteski, Martinčić et al. used light to manipulate proteins at the exact moment of chromosome alignment and to move PRC1 from the spindle to the cell membrane. Consequently, Kif4A and Kif18A were removed from the spindle center. This caused the bridging fibers, which overlap with the microtubules that connect to the chromosomes, to become thinner. Jagrić et al. discovered that without the molecular ruler proteins, the bridging fibers were also too long. This increased the overlap between the microtubules in the center of the spindle, causing the chromosomes to migrate away from the center. This suggests that the alignment of chromosomes in the middle of the spindle depends on the bridging microtubules, which need to be of a certain length to effectively move and keep the chromosomes at the center. Thus, forces that move the chromosomes are generated both at the tips of the microtubules and along the wall of microtubules. These results might inspire other researchers to reassess the role of bridging fibers in cell division. The optogenetic technique described here could also help to determine the parts other proteins have to play. Ultimately, this might allow researchers to identify all the proteins needed to align the chromosomes.
Collapse
Affiliation(s)
- Mihaela Jagrić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Patrik Risteski
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Jelena Martinčić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Milas
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Iva M Tolić
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
6
|
Blázquez-Castro A, Fernández-Piqueras J, Santos J. Genetic Material Manipulation and Modification by Optical Trapping and Nanosurgery-A Perspective. Front Bioeng Biotechnol 2020; 8:580937. [PMID: 33072730 PMCID: PMC7530750 DOI: 10.3389/fbioe.2020.580937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Light can be employed as a tool to alter and manipulate matter in many ways. An example has been the implementation of optical trapping, the so called optical tweezers, in which light can hold and move small objects with 3D control. Of interest for the Life Sciences and Biotechnology is the fact that biological objects in the size range from tens of nanometers to hundreds of microns can be precisely manipulated through this technology. In particular, it has been shown possible to optically trap and move genetic material (DNA and chromatin) using optical tweezers. Also, these biological entities can be severed, rearranged and reconstructed by the combined use of laser scissors and optical tweezers. In this review, the background, current state and future possibilities of optical tweezers and laser scissors to manipulate, rearrange and alter genetic material (DNA, chromatin and chromosomes) will be presented. Sources of undesirable effects by the optical procedure and measures to avoid them will be discussed. In addition, first tentative approaches at cellular-level genetic and organelle surgery, in which genetic material or DNA-carrying organelles are extracted out or introduced into cells, will be presented.
Collapse
Affiliation(s)
- Alfonso Blázquez-Castro
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain
| | - José Fernández-Piqueras
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain.,Institute of Health Research Jiménez Diaz Foundation, Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBERER), Carlos III Institute of Health, Madrid, Spain
| | - Javier Santos
- Department of Biology, Faculty of Sciences, Autonomous University of Madrid, Madrid, Spain.,Genome Dynamics and Function Program, Genome Decoding Unit, Severo Ochoa Molecular Biology Center (CBMSO), CSIC-Autonomous University of Madrid, Madrid, Spain.,Institute of Health Research Jiménez Diaz Foundation, Madrid, Spain.,Consortium for Biomedical Research in Rare Diseases (CIBERER), Carlos III Institute of Health, Madrid, Spain
| |
Collapse
|
7
|
Wittmann T, Dema A, van Haren J. Lights, cytoskeleton, action: Optogenetic control of cell dynamics. Curr Opin Cell Biol 2020; 66:1-10. [PMID: 32371345 PMCID: PMC7577957 DOI: 10.1016/j.ceb.2020.03.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 01/29/2023]
Abstract
Cell biology is moving from observing molecules to controlling them in real time, a critical step towards a mechanistic understanding of how cells work. Initially developed from light-gated ion channels to control neuron activity, optogenetics now describes any genetically encoded protein system designed to accomplish specific light-mediated tasks. Recent photosensitive switches use many ingenious designs that bring spatial and temporal control within reach for almost any protein or pathway of interest. This next generation optogenetics includes light-controlled protein-protein interactions and shape-shifting photosensors, which in combination with live microscopy enable acute modulation and analysis of dynamic protein functions in living cells. We provide a brief overview of various types of optogenetic switches. We then discuss how diverse approaches have been used to control cytoskeleton dynamics with light through Rho GTPase signaling, microtubule and actin assembly, mitotic spindle positioning and intracellular transport and highlight advantages and limitations of different experimental strategies.
Collapse
Affiliation(s)
- Torsten Wittmann
- Department of Cell & Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Alessandro Dema
- Department of Cell & Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | |
Collapse
|
8
|
O'Toole E, Morphew M, McIntosh JR. Electron tomography reveals aspects of spindle structure important for mechanical stability at metaphase. Mol Biol Cell 2019; 31:184-195. [PMID: 31825721 PMCID: PMC7001478 DOI: 10.1091/mbc.e19-07-0405] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Metaphase spindles exert pole-directed forces on still-connected sister kinetochores. The spindle must counter these forces with extensive forces to prevent spindle collapse. In small spindles, kinetochore microtubules (KMTs) connect directly with the poles, and countering forces are supplied either by interdigitating MTs that form interpolar bundles or by astral MTs connected to the cell cortex. In bigger spindles, particularly those without structured poles, the origin of extensive forces is less obvious. We have used electron tomography of well-preserved metaphase cells to obtain structural evidence about interactions among different classes of MTs in metaphase spindles from Chlamydomonas rheinhardti and two strains of cultured mammalian cells. In all these spindles, KMTs approach close to and cross-bridge with the minus ends of non-KMTs, which form a framework that interdigitates near the spindle equator. Although this structure is not pole-connected, its organization suggests that it can support kinetochore tension. Analogous arrangements of MTs have been seen in even bigger spindles, such as metaphase spindles in Haemanthus endosperm and frog egg extracts. We present and discuss a hypothesis that rationalizes changes in spindle design with spindle size based on the negative exponential distribution of MT lengths in dynamically unstable populations of tubulin polymers.
Collapse
Affiliation(s)
- Eileen O'Toole
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309
| | - Mary Morphew
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309
| | - J Richard McIntosh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309
| |
Collapse
|
9
|
Simunić J, Subramanian R. Meeting report - Mitotic spindle: from living and synthetic systems to theory. J Cell Sci 2019; 132:132/17/jcs237602. [PMID: 31477579 DOI: 10.1242/jcs.237602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Leading scientists from the field of mitotic spindle research gathered from 24-27 March 2019 to participate in the first 'Mitotic spindle: From living and synthetic systems to theory' conference. This meeting was held in Split, Croatia, organized by Nenad Pavin (Faculty of Science, University of Zagreb) and Iva Tolić (Ruđer Bošković Institute, Zagreb). Around 75 participants presented the latest advances in mitotic spindle research, ranging from live-cell imaging, in vitro reconstitution experiments and theoretical models of spindle assembly. The meeting successfully created an environment for interesting scientific discussions, initiation of new collaborations and development of fresh ideas. In this report, we will highlight and summarize new data challenging the established models of spindle architecture, advances in spindle reconstitution assays, discovery of new regulators of spindle size and shape as well as theoretical approaches for investigating motor protein function.
Collapse
Affiliation(s)
- Juraj Simunić
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA .,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Taulet N, Douanier A, Vitre B, Anguille C, Maurin J, Dromard Y, Georget V, Delaval B. IFT88 controls NuMA enrichment at k-fibers minus-ends to facilitate their re-anchoring into mitotic spindles. Sci Rep 2019; 9:10311. [PMID: 31312011 PMCID: PMC6635507 DOI: 10.1038/s41598-019-46605-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 07/02/2019] [Indexed: 02/06/2023] Open
Abstract
To build and maintain mitotic spindle architecture, molecular motors exert spatially regulated forces on microtubules (MT) minus-ends. This spatial regulation is required to allow proper chromosomes alignment through the organization of kinetochore fibers (k-fibers). NuMA was recently shown to target dynactin to MT minus-ends and thus to spatially regulate dynein activity. However, given that k-fibers are embedded in the spindle, our understanding of the machinery involved in the targeting of proteins to their minus-ends remains limited. Intraflagellar transport (IFT) proteins were primarily studied for their ciliary roles but they also emerged as key regulators of cell division. Taking advantage of MT laser ablation, we show here that IFT88 concentrates at k-fibers minus-ends and is required for their re-anchoring into spindles by controlling NuMA accumulation. Indeed, IFT88 interacts with NuMA and is required for its enrichment at newly generated k-fibers minus-ends. Combining nocodazole washout experiments and IFT88 depletion, we further show that IFT88 is required for the reorganization of k-fibers into spindles and thus for efficient chromosomes alignment in mitosis. Overall, we propose that IFT88 could serve as a mitotic MT minus-end adaptor to concentrate NuMA at minus-ends thus facilitating k-fibers incorporation into the main spindle.
Collapse
Affiliation(s)
- Nicolas Taulet
- CRBM, CNRS, Univ. Montpellier, Centrosome, cilia and pathologies Lab, 1919 Route de Mende, 34293, Montpellier, France.
| | - Audrey Douanier
- CRBM, CNRS, Univ. Montpellier, Centrosome, cilia and pathologies Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Benjamin Vitre
- CRBM, CNRS, Univ. Montpellier, Centrosome, cilia and pathologies Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Christelle Anguille
- CRBM, CNRS, Univ. Montpellier, Centrosome, cilia and pathologies Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Justine Maurin
- CRBM, CNRS, Univ. Montpellier, Centrosome, cilia and pathologies Lab, 1919 Route de Mende, 34293, Montpellier, France
| | - Yann Dromard
- Montpellier Ressources Imagerie, CRBM, CNRS, Univ. Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Virginie Georget
- Montpellier Ressources Imagerie, CRBM, CNRS, Univ. Montpellier, 1919 Route de Mende, 34293, Montpellier, France
| | - Benedicte Delaval
- CRBM, CNRS, Univ. Montpellier, Centrosome, cilia and pathologies Lab, 1919 Route de Mende, 34293, Montpellier, France.
| |
Collapse
|
11
|
Valente AJ, Fonseca J, Moradi F, Foran G, Necakov A, Stuart JA. Quantification of Mitochondrial Network Characteristics in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:183-196. [DOI: 10.1007/978-981-13-8367-0_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|