1
|
Proietto M, Crippa M, Damiani C, Pasquale V, Sacco E, Vanoni M, Gilardi M. Tumor heterogeneity: preclinical models, emerging technologies, and future applications. Front Oncol 2023; 13:1164535. [PMID: 37188201 PMCID: PMC10175698 DOI: 10.3389/fonc.2023.1164535] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Heterogeneity describes the differences among cancer cells within and between tumors. It refers to cancer cells describing variations in morphology, transcriptional profiles, metabolism, and metastatic potential. More recently, the field has included the characterization of the tumor immune microenvironment and the depiction of the dynamics underlying the cellular interactions promoting the tumor ecosystem evolution. Heterogeneity has been found in most tumors representing one of the most challenging behaviors in cancer ecosystems. As one of the critical factors impairing the long-term efficacy of solid tumor therapy, heterogeneity leads to tumor resistance, more aggressive metastasizing, and recurrence. We review the role of the main models and the emerging single-cell and spatial genomic technologies in our understanding of tumor heterogeneity, its contribution to lethal cancer outcomes, and the physiological challenges to consider in designing cancer therapies. We highlight how tumor cells dynamically evolve because of the interactions within the tumor immune microenvironment and how to leverage this to unleash immune recognition through immunotherapy. A multidisciplinary approach grounded in novel bioinformatic and computational tools will allow reaching the integrated, multilayered knowledge of tumor heterogeneity required to implement personalized, more efficient therapies urgently required for cancer patients.
Collapse
Affiliation(s)
- Marco Proietto
- Next Generation Sequencing Core, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, United States
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Martina Crippa
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, Istituti di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Chiara Damiani
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Valentina Pasquale
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Elena Sacco
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Marco Vanoni
- Infrastructure Systems Biology Europe /Centre of Systems Biology (ISBE/SYSBIO) Centre of Systems Biology, Milan, Italy
- Department of Biotechnology and Biosciences, School of Sciences, University of Milano-Bicocca, Milan, Italy
| | - Mara Gilardi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, The Salk Institute for Biological Studies, La Jolla, CA, United States
- Salk Cancer Center, The Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
2
|
Ngan Ngo TK, Kuo CH, Tu TY. Recent advances in microfluidic-based cancer immunotherapy-on-a-chip strategies. BIOMICROFLUIDICS 2023; 17:011501. [PMID: 36647540 PMCID: PMC9840534 DOI: 10.1063/5.0108792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Despite several extraordinary improvements in cancer immunotherapy, its therapeutic effectiveness against many distinct cancer types remains mostly limited and requires further study. Different microfluidic-based cancer immunotherapy-on-a-chip (ITOC) systems have been developed to help researchers replicate the tumor microenvironment and immune system. Numerous microfluidic platforms can potentially be used to perform various on-chip activities related to early clinical cancer immunotherapy processes, such as improving immune checkpoint blockade therapy, studying immune cell dynamics, evaluating cytotoxicity, and creating vaccines or organoid models from patient samples. In this review, we summarize the most recent advancements in the development of various microfluidic-based ITOC devices for cancer treatment niches and present future perspectives on microfluidic devices for immunotherapy research.
Collapse
Affiliation(s)
- Thi Kim Ngan Ngo
- Biomedical Engineering Department, College of Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Ting-Yuan Tu
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Fibroblasts Impair Migration and Antitumor Activity of NK-92 Lymphocytes in a Melanoma-on-Chip Model. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010052. [PMID: 36671624 PMCID: PMC9854880 DOI: 10.3390/bioengineering10010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Adoptive cell therapy in solid tumors, such as melanoma, is impaired, but little is known about the role that the fibroblasts present in the tumor microenvironment could exert. However, the mechanism at play is not well understood, partly due to the lack of relevant pre-clinical models. Three-dimensional culture and microfluidic chips are used to recapitulate the dynamic interactions among different types of cells in the tumor microenvironment in controlled and physiological settings. In this brief report, we propose a reductionist melanoma-on-a-chip model for evaluating the essential role of fibroblasts in the antitumor activity of lymphocytes. To this end, 3D melanoma spheroids were monocultured and co-cultured with human dermal fibroblasts and the NK-92 cell migration towards the tumor compartment was tested in a commercially available microfluidic device. Utilizing confocal microscopy, we observed the different recruitment of NK-92 cells in the presence and absence of fibroblasts. Our results show that fibroblasts' presence inhibits immune effector recruiting by exploiting a 3D pre-clinical tumor model.
Collapse
|
4
|
Özkan A, Stolley DL, Cressman ENK, McMillin M, DeMorrow S, Yankeelov TE, Rylander MN. Tumor Microenvironment Alters Chemoresistance of Hepatocellular Carcinoma Through CYP3A4 Metabolic Activity. Front Oncol 2021; 11:662135. [PMID: 34262860 PMCID: PMC8273608 DOI: 10.3389/fonc.2021.662135] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/07/2021] [Indexed: 12/20/2022] Open
Abstract
Variations in tumor biology from patient to patient combined with the low overall survival rate of hepatocellular carcinoma (HCC) present significant clinical challenges. During the progression of chronic liver diseases from inflammation to the development of HCC, microenvironmental properties, including tissue stiffness and oxygen concentration, change over time. This can potentially impact drug metabolism and subsequent therapy response to commonly utilized therapeutics, such as doxorubicin, multi-kinase inhibitors (e.g., sorafenib), and other drugs, including immunotherapies. In this study, we utilized four common HCC cell lines embedded in 3D collagen type-I gels of varying stiffnesses to mimic normal and cirrhotic livers with environmental oxygen regulation to quantify the impact of these microenvironmental factors on HCC chemoresistance. In general, we found that HCC cells with higher baseline levels of cytochrome p450-3A4 (CYP3A4) enzyme expression, HepG2 and C3Asub28, exhibited a cirrhosis-dependent increase in doxorubicin chemoresistance. Under the same conditions, HCC cell lines with lower CYP3A4 expression, HuH-7 and Hep3B2, showed a decrease in doxorubicin chemoresistance in response to an increase in microenvironmental stiffness. This differential therapeutic response was correlated with the regulation of CYP3A4 expression levels under the influence of stiffness and oxygen variation. In all tested HCC cell lines, the addition of sorafenib lowered the required doxorubicin dose to induce significant levels of cell death, demonstrating its potential to help reduce systemic doxorubicin toxicity when used in combination. These results suggest that patient-specific tumor microenvironmental factors, including tissue stiffness, hypoxia, and CYP3A4 activity levels, may need to be considered for more effective use of chemotherapeutics in HCC patients.
Collapse
Affiliation(s)
- Alican Özkan
- Department of Mechanical Engineering, The University of Texas, Austin, TX, United States
| | - Danielle L. Stolley
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
| | - Erik N. K. Cressman
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Matthew McMillin
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Central Texas Veterans Health Care System, Temple, TX, United States
| | - Sharon DeMorrow
- Department of Internal Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
- Central Texas Veterans Health Care System, Temple, TX, United States
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, United States
- Departments of Diagnostic Medicine, The University of Texas, Austin, TX, United States
- Department of Oncology, The University of Texas, Austin, TX, United States
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas, Austin, TX, United States
| | - Marissa Nichole Rylander
- Department of Mechanical Engineering, The University of Texas, Austin, TX, United States
- Department of Biomedical Engineering, The University of Texas, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas, Austin, TX, United States
| |
Collapse
|
5
|
Ayuso JM, Rehman S, Virumbrales-Munoz M, McMinn PH, Geiger P, Fitzgerald C, Heaster T, Skala MC, Beebe DJ. Microfluidic tumor-on-a-chip model to evaluate the role of tumor environmental stress on NK cell exhaustion. SCIENCE ADVANCES 2021; 7:7/8/eabc2331. [PMID: 33597234 PMCID: PMC7888951 DOI: 10.1126/sciadv.abc2331] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 12/28/2020] [Indexed: 05/09/2023]
Abstract
Solid tumors generate a suppressive environment that imposes an overwhelming burden on the immune system. Nutrient depletion, waste product accumulation, hypoxia, and pH acidification severely compromise the capacity of effector immune cells such as T and natural killer (NK) cells to destroy cancer cells. However, the specific molecular mechanisms driving immune suppression, as well as the capacity of immune cells to adapt to the suppressive environment, are not completely understood. Thus, here, we used an in vitro microfluidic tumor-on-a-chip platform to evaluate how NK cells respond to the tumor-induced suppressive environment. The results demonstrated that the suppressive environment created by the tumor gradually eroded NK cell cytotoxic capacity, leading to compromised NK cell surveillance and tumor tolerance. Further, NK cell exhaustion persisted for an extended period of time after removing NK cells from the microfluidic platform. Last, the addition of checkpoint inhibitors and immunomodulatory agents alleviated NK cell exhaustion.
Collapse
Affiliation(s)
- Jose M Ayuso
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA.
| | - Shujah Rehman
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | | | - Patrick H McMinn
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Peter Geiger
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Cate Fitzgerald
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Tiffany Heaster
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Melissa C Skala
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - David J Beebe
- Department of Pathology & Laboratory Medicine, University of Wisconsin, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin, Madison, WI, USA
- The University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
6
|
Parayath NN, Stephan SB, Koehne AL, Nelson PS, Stephan MT. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat Commun 2020; 11:6080. [PMID: 33247092 PMCID: PMC7695830 DOI: 10.1038/s41467-020-19486-2] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 10/18/2020] [Indexed: 12/12/2022] Open
Abstract
Engineering chimeric antigen receptors (CAR) or T cell receptors (TCR) helps create disease-specific T cells for targeted therapy, but the cost and rigor associated with manufacturing engineered T cells ex vivo can be prohibitive, so programing T cells in vivo may be a viable alternative. Here we report an injectable nanocarrier that delivers in vitro-transcribed (IVT) CAR or TCR mRNA for transiently reprograming of circulating T cells to recognize disease-relevant antigens. In mouse models of human leukemia, prostate cancer and hepatitis B-induced hepatocellular carcinoma, repeated infusions of these polymer nanocarriers induce sufficient host T cells expressing tumor-specific CARs or virus-specific TCRs to cause disease regression at levels similar to bolus infusions of ex vivo engineered lymphocytes. Given their ease of manufacturing, distribution and administration, these nanocarriers, and the associated platforms, could become a therapeutic for a wide range of diseases. Ex vivo engineering of antigen-specific T cells has shown therapeutic efficacy but can be costly and scarce. Here the authors show that in vitro-transcribed antigen receptor mRNA packaged in nanocarriers can directly induce, in vivo, transient their expression in circulating T cells to provide therapeutic effects in mouse models of cancer or viral infection.
Collapse
Affiliation(s)
- N N Parayath
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - S B Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - A L Koehne
- Translational Pathology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - P S Nelson
- Division of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA.,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - M T Stephan
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. .,Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, 98195, USA. .,Department of Bioengineering and Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
7
|
How to overcome the side effects of tumor immunotherapy. Biomed Pharmacother 2020; 130:110639. [PMID: 33658124 DOI: 10.1016/j.biopha.2020.110639] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/16/2020] [Indexed: 12/17/2022] Open
Abstract
The incidence of cancer is increasing year by year. Cancer has become one of the health threats of modern people. Simply relying on the surgery, chemotherapy or radiotherapy, not only the survival rate is not high, but also the quality of life of patients is not much better. Fortunately, the emergence and rapid development of cancer immunotherapy have brought more and more exciting results. However, when scientists think it is possible to overcome cancer, they find that not all cancer patients can benefit from immunotherapy, that is to say, the overall efficiency of immunotherapy is not high. Drug resistance and side effects of immunotherapy cannot be ignored. In order to overcome these difficulties, scientists continue to improve the strategy of immunotherapy and find that combination therapy can effectively reduce the incidence of drug resistance. They also found that by reprogramming tumor blood vessels, activating ferroptosis, utilizing thioredoxin, FATP2 and other substances, the therapeutic effect can be improved and side effects can be alleviated. This article reviews the principles of immunotherapy, new strategies to overcome drug resistance of cancer immunotherapy, and how to improve the efficacy of immunotherapy and reduce side effects.
Collapse
|