1
|
Hirose K, Kodera S, Nishikawa M, Sato M, Zhou Y, Zhang H, Minatsuki S, Ishida J, Takeda N, Wang H, Kong C, Deng Y, Chen J, Zhang C, Akita J, Ibayashi Y, Yang R, Kanno H, Nitta N, Sugimura T, Takeda N, Kurano M, Yatomi Y, Goda K. Direct evaluation of antiplatelet therapy in coronary artery disease by comprehensive image-based profiling of circulating platelets. Nat Commun 2025; 16:4386. [PMID: 40374642 DOI: 10.1038/s41467-025-59664-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/29/2025] [Indexed: 05/17/2025] Open
Abstract
Coronary artery disease (CAD) is a leading cause of death globally. Antiplatelet therapy remains crucial in preventing and treating CAD-associated thrombotic complications, but it concurrently amplifies the risk of bleeding. Unfortunately, traditional platelet function measurement methods cannot directly evaluate its efficacy and safety. Here we demonstrate comprehensive image-based profiling of circulating platelets to directly observe thrombotic conditions and assess antiplatelet therapy in CAD patients. Deep learning-based analysis of whole blood samples from 207 CAD patients revealed elevated concentrations of circulating platelet aggregates, especially in acute versus chronic coronary syndrome patients. It also indicated a regimen-dependent reduction in these concentrations upon treatment with antiplatelet drugs, thereby verifying the direct efficacy of the therapy. Notably, consistent concentrations of these aggregates were found in both venous and arterial blood, suggesting venous blood as a reliable therapy efficacy indicator, despite CAD's arterial nature. These findings support personalized and improved antiplatelet therapy in CAD management.
Collapse
Affiliation(s)
- Kazutoshi Hirose
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kodera
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Masako Nishikawa
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan.
| | - Masataka Sato
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuqi Zhou
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Hongqian Zhang
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Shun Minatsuki
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Junichi Ishida
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Norifumi Takeda
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Huidong Wang
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Chuiming Kong
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Yunjie Deng
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Junyu Chen
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Chenqi Zhang
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Jun Akita
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Yuma Ibayashi
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Ruoxi Yang
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kanno
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | | | - Norihiko Takeda
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Kurano
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, The University of Tokyo, Tokyo, Japan
- International University of Health and Welfare Graduate School, Tokyo, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo, Japan.
- CYBO Inc, Tokyo, Japan.
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
- Institute of Technological Sciences, Wuhan University, Hubei, China.
- International Center for Synchrotron Radiation Innovation Smart (SRIS), Tohoku University, Miyagi, Japan.
| |
Collapse
|
2
|
Petruzzellis I, Martínez Vázquez R, Caragnano S, Gaudiuso C, Osellame R, Ancona A, Volpe A. Lab-on-Chip Systems for Cell Sorting: Main Features and Advantages of Inertial Focusing in Spiral Microchannels. MICROMACHINES 2024; 15:1135. [PMID: 39337795 PMCID: PMC11434521 DOI: 10.3390/mi15091135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Inertial focusing-based Lab-on-Chip systems represent a promising technology for cell sorting in various applications, thanks to their alignment with the ASSURED criteria recommended by the World Health Organization: Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Delivered. Inertial focusing techniques using spiral microchannels offer a rapid, portable, and easy-to-prototype solution for cell sorting. Various microfluidic devices have been investigated in the literature to understand how hydrodynamic forces influence particle focusing in spiral microchannels. This is crucial for the effective prototyping of devices that allow for high-throughput and efficient filtration of particles of different sizes. However, a clear, comprehensive, and organized overview of current research in this area is lacking. This review aims to fill this gap by offering a thorough summary of the existing literature, thereby guiding future experimentation and facilitating the selection of spiral geometries and materials for cell sorting in microchannels. To this end, we begin with a detailed theoretical introduction to the physical mechanisms underlying particle separation in spiral microfluidic channels. We also dedicate a section to the materials and prototyping techniques most commonly used for spiral microchannels, highlighting and discussing their respective advantages and disadvantages. Subsequently, we provide a critical examination of the key details of inertial focusing across various cross-sections (rectangular, trapezoidal, triangular, hybrid) in spiral devices as reported in the literature.
Collapse
Affiliation(s)
- Isabella Petruzzellis
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
| | - Rebeca Martínez Vázquez
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Piazza L. da Vinci 32, 20133 Milan, Italy;
| | - Stefania Caragnano
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
| | - Caterina Gaudiuso
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70125 Bari, Italy;
| | - Roberto Osellame
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Piazza L. da Vinci 32, 20133 Milan, Italy;
| | - Antonio Ancona
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70125 Bari, Italy;
| | - Annalisa Volpe
- Physics Department, Università degli Studi di Bari & Politecnico di Bari, Via Orabona 4, 7016 Bari, Italy; (I.P.); (S.C.); (A.A.)
- Institute for Photonics and Nanotechnologies (IFN), National Research Council, Via Amendola 173, 70125 Bari, Italy;
| |
Collapse
|
3
|
Nishikawa M, Kanno H, Zhou Y, Xiao TH, Suzuki T, Ibayashi Y, Harmon J, Takizawa S, Hiramatsu K, Nitta N, Kameyama R, Peterson W, Takiguchi J, Shifat-E-Rabbi M, Zhuang Y, Yin X, Rubaiyat AHM, Deng Y, Zhang H, Miyata S, Rohde GK, Iwasaki W, Yatomi Y, Goda K. Massive image-based single-cell profiling reveals high levels of circulating platelet aggregates in patients with COVID-19. Nat Commun 2021; 12:7135. [PMID: 34887400 PMCID: PMC8660840 DOI: 10.1038/s41467-021-27378-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/16/2021] [Indexed: 12/19/2022] Open
Abstract
A characteristic clinical feature of COVID-19 is the frequent incidence of microvascular thrombosis. In fact, COVID-19 autopsy reports have shown widespread thrombotic microangiopathy characterized by extensive diffuse microthrombi within peripheral capillaries and arterioles in lungs, hearts, and other organs, resulting in multiorgan failure. However, the underlying process of COVID-19-associated microvascular thrombosis remains elusive due to the lack of tools to statistically examine platelet aggregation (i.e., the initiation of microthrombus formation) in detail. Here we report the landscape of circulating platelet aggregates in COVID-19 obtained by massive single-cell image-based profiling and temporal monitoring of the blood of COVID-19 patients (n = 110). Surprisingly, our analysis of the big image data shows the anomalous presence of excessive platelet aggregates in nearly 90% of all COVID-19 patients. Furthermore, results indicate strong links between the concentration of platelet aggregates and the severity, mortality, respiratory condition, and vascular endothelial dysfunction level of COVID-19 patients.
Collapse
Affiliation(s)
- Masako Nishikawa
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hiroshi Kanno
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuqi Zhou
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ting-Hui Xiao
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Takuma Suzuki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Yuma Ibayashi
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Jeffrey Harmon
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shigekazu Takizawa
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
- Research Center for Spectrochemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | | | - Risako Kameyama
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Walker Peterson
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Jun Takiguchi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | | | - Yan Zhuang
- Department of Electrical and Computer Engineering, University of Virginia, Virginia, 22908, USA
| | - Xuwang Yin
- Department of Electrical and Computer Engineering, University of Virginia, Virginia, 22908, USA
| | | | - Yunjie Deng
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Hongqian Zhang
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shigeki Miyata
- Research and Development Department, Central Blood Institute, Japanese Red Cross Society, Tokyo, 135-8521, Japan
| | - Gustavo K Rohde
- Department of Biomedical Engineering, University of Virginia, Virginia, 22908, USA
- Department of Electrical and Computer Engineering, University of Virginia, Virginia, 22908, USA
| | - Wataru Iwasaki
- Department of Computational Biology and Medical Sciences, The University of Tokyo, Chiba, 277-8562, Japan
- Department of Biological Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Department of Integrated Biosciences, The University of Tokyo, Chiba, 277-8562, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033, Japan.
- Institute of Technological Sciences, Wuhan University, 430072, Hubei, China.
- Department of Bioengineering, University of California, Los Angeles, California, 90095, USA.
| |
Collapse
|
4
|
Zhou WM, Yan YY, Guo QR, Ji H, Wang H, Xu TT, Makabel B, Pilarsky C, He G, Yu XY, Zhang JY. Microfluidics applications for high-throughput single cell sequencing. J Nanobiotechnology 2021; 19:312. [PMID: 34635104 PMCID: PMC8507141 DOI: 10.1186/s12951-021-01045-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
The inherent heterogeneity of individual cells in cell populations plays significant roles in disease development and progression, which is critical for disease diagnosis and treatment. Substantial evidences show that the majority of traditional gene profiling methods mask the difference of individual cells. Single cell sequencing can provide data to characterize the inherent heterogeneity of individual cells, and reveal complex and rare cell populations. Different microfluidic technologies have emerged for single cell researches and become the frontiers and hot topics over the past decade. In this review article, we introduce the processes of single cell sequencing, and review the principles of microfluidics for single cell analysis. Also, we discuss the common high-throughput single cell sequencing technologies along with their advantages and disadvantages. Lastly, microfluidics applications in single cell sequencing technology for the diagnosis of cancers and immune system diseases are briefly illustrated.
Collapse
Affiliation(s)
- Wen-Min Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Yan-Yan Yan
- School of Medicine, Shanxi Datong University, Datong, 037009, People's Republic of China
| | - Qiao-Ru Guo
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hong Ji
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hui Wang
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Tian-Tian Xu
- Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, People's Republic of China
| | - Bolat Makabel
- Xinjiang Institute of Materia Medica, Urumqi, 830004, People's Republic of China
| | - Christian Pilarsky
- Department of Surgery, Friedrich-Alexander University of Erlangen-Nuremberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Gen He
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| | - Jian-Ye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology , The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China.
| |
Collapse
|
5
|
Yuan D, Yadav S, Ta HT, Fallahi H, An H, Kashaninejad N, Ooi CH, Nguyen NT, Zhang J. Investigation of viscoelastic focusing of particles and cells in a zigzag microchannel. Electrophoresis 2021; 42:2230-2237. [PMID: 34396540 DOI: 10.1002/elps.202100126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/26/2021] [Accepted: 08/05/2021] [Indexed: 12/13/2022]
Abstract
Microfluidic particle focusing has been a vital prerequisite step in sample preparation for downstream particle separation, counting, detection, or analysis, and has attracted broad applications in biomedical and chemical areas. Besides all the active and passive focusing methods in Newtonian fluids, particle focusing in viscoelastic fluids has been attracting increasing interest because of its advantages induced by intrinsic fluid property. However, to achieve a well-defined focusing position, there is a need to extend channel lengths when focusing micrometer-sized or sub-microsized particles, which would result in the size increase of the microfluidic devices. This work investigated the sheathless viscoelastic focusing of particles and cells in a zigzag microfluidic channel. Benefit from the zigzag structure of the channel, the channel length and the footprint of the device can be reduced without sacrificing the focusing performance. In this work, the viscoelastic focusing, including the focusing of 10 μm polystyrene particles, 5 μm polystyrene particles, 5 μm magnetic particles, white blood cells (WBCs), red blood cells (RBCs), and cancer cells, were all demonstrated. Moreover, magnetophoretic separation of magnetic and nonmagnetic particles after viscoelastic pre-focusing was shown. This focusing technique has the potential to be used in a range of biomedical applications.
Collapse
Affiliation(s)
- Dan Yuan
- Centre for Regional and Rural Futures, Deakin University, Geelong, Victoria, 3216, Australia
| | - Sharda Yadav
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hang T Ta
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hedieh Fallahi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hongjie An
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Navid Kashaninejad
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Jun Zhang
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
6
|
Affiliation(s)
- Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ian M. Freed
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66044, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66044, United States
| |
Collapse
|
7
|
Grenci G, Bertocchi C, Ravasio A. Integrating Microfabrication into Biological Investigations: the Benefits of Interdisciplinarity. MICROMACHINES 2019; 10:E252. [PMID: 30995747 PMCID: PMC6523848 DOI: 10.3390/mi10040252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/08/2019] [Accepted: 04/13/2019] [Indexed: 12/14/2022]
Abstract
The advent of micro and nanotechnologies, such as microfabrication, have impacted scientific research and contributed to meaningful real-world applications, to a degree seen during historic technological revolutions. Some key areas benefitting from the invention and advancement of microfabrication platforms are those of biological and biomedical sciences. Modern therapeutic approaches, involving point-of-care, precision or personalized medicine, are transitioning from the experimental phase to becoming the standard of care. At the same time, biological research benefits from the contribution of microfluidics at every level from single cell to tissue engineering and organoids studies. The aim of this commentary is to describe, through proven examples, the interdisciplinary process used to develop novel biological technologies and to emphasize the role of technical knowledge in empowering researchers who are specialized in a niche area to look beyond and innovate.
Collapse
Affiliation(s)
- Gianluca Grenci
- Mechanobiology Institute (MBI), National University of Singapore, Singapore 117411, Singapore.
- Biomedical Engineering Department, National University of Singapore, Singapore 117583, Singapore.
| | - Cristina Bertocchi
- Department of Physiology, School of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile.
| | - Andrea Ravasio
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile.
| |
Collapse
|