1
|
Sharma M, Pal P, Gupta SK. Deciphering the role of miRNAs in Alzheimer's disease: Predictive targeting and pathway modulation - A systematic review. Ageing Res Rev 2024; 101:102483. [PMID: 39236856 DOI: 10.1016/j.arr.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's Disease (AD), a multifaceted neurodegenerative disorder, is increasingly understood through the regulatory lens of microRNAs (miRNAs). This review comprehensively examines the pivotal roles of miRNAs in AD pathogenesis, shedding light on their influence across various pathways. We delve into the biogenesis and mechanisms of miRNAs, emphasizing their significant roles in brain function and regulation. The review then navigates the complex landscape of AD pathogenesis, identifying key genetic, environmental, and molecular factors, with a focus on hallmark pathological features like amyloid-beta accumulation and tau protein hyperphosphorylation. Central to our discussion is the intricate involvement of miRNAs in these processes, highlighting their altered expression patterns in AD and subsequent functional implications, from amyloid-beta metabolism to tau pathology, neuroinflammation, oxidative stress, and synaptic dysfunction. The predictive analysis of miRNA targets using computational methods, complemented by experimental validations, forms a crucial part of our discourse, unraveling the contributions of specific miRNAs to AD. Moreover, we explore the therapeutic potential of miRNAs as biomarkers and in miRNA-based interventions, while addressing the challenges in translating these findings into clinical practice. This review aims to enhance understanding of miRNAs in AD, offering a foundation for future research directions and novel therapeutic strategies.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Pankaj Pal
- IIMT College of Pharmacy, IIMT Group of Colleges, Greater Noida, Uttar Pradesh, India.
| | - Sukesh Kumar Gupta
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad, Uttar Pradesh, India; Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
2
|
Remsburg CM, Konrad KD, Testa MD, Stepicheva N, Lee K, Choe LH, Polson S, Bhavsar J, Huang H, Song JL. miR-31-mediated local translation at the mitotic spindle is important for early development. Development 2024; 151:dev202619. [PMID: 39250531 PMCID: PMC11423917 DOI: 10.1242/dev.202619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/17/2024] [Indexed: 09/11/2024]
Abstract
miR-31 is a highly conserved microRNA that plays crucial roles in cell proliferation, migration and differentiation. We discovered that miR-31 and some of its validated targets are enriched on the mitotic spindle of the dividing sea urchin embryo and mammalian cells. Using the sea urchin embryo, we found that miR-31 inhibition led to developmental delay correlated with increased cytoskeletal and chromosomal defects. We identified miR-31 to directly suppress several actin remodeling transcripts, including β-actin, Gelsolin, Rab35 and Fascin. De novo translation of Fascin occurs at the mitotic spindle of sea urchin embryos and mammalian cells. Importantly, miR-31 inhibition leads to a significant a increase of newly translated Fascin at the spindle of dividing sea urchin embryos. Forced ectopic localization of Fascin transcripts to the cell membrane and translation led to significant developmental and chromosomal segregation defects, highlighting the importance of the regulation of local translation by miR-31 at the mitotic spindle to ensure proper cell division. Furthermore, miR-31-mediated post-transcriptional regulation at the mitotic spindle may be an evolutionarily conserved regulatory paradigm of mitosis.
Collapse
Affiliation(s)
- Carolyn M. Remsburg
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Kalin D. Konrad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Neurology, Columbia University, New York, NY 10032, USA
| | - Michael D. Testa
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Nadezda Stepicheva
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Kelvin Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, DE 19716, USA
| | - Leila H. Choe
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- National Institute for Innovation in Manufacturing Biopharmaceuticals, Newark, DE 19716, USA
| | - Shawn Polson
- Department of Computer and Informational Sciences; Plant & Soil Sciences; Biological Sciences, CBCB Bioinformatics Core Facility; Bioinformatics, Healthcare Informatics, and Data Science Network of Delaware, University of Delaware, Newark, DE 19716, USA
| | - Jaysheel Bhavsar
- Department of Computer and Informational Sciences, University of Delaware, DE 19716, USA
| | - Hongzhan Huang
- Department of Computer and Informational Sciences, University of Delaware, DE 19716, USA
| | - Jia L. Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
3
|
Sampilo NF, Song JL. microRNA-1 regulates sea urchin skeletogenesis by directly targeting skeletogenic genes and modulating components of signaling pathways. Dev Biol 2024; 508:123-137. [PMID: 38290645 PMCID: PMC10985635 DOI: 10.1016/j.ydbio.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
microRNAs are evolutionarily conserved non-coding RNAs that direct post-transcriptional regulation of target transcripts. In vertebrates, microRNA-1 (miR-1) is expressed in muscle and has been found to play critical regulatory roles in vertebrate angiogenesis, a process that has been proposed to be analogous to sea urchin skeletogenesis. Results indicate that both miR-1 inhibitor and miR-1 mimic-injected larvae have significantly less F-actin enriched circumpharyngeal muscle fibers and fewer gut contractions. In addition, miR-1 regulates the positioning of skeletogenic primary mesenchyme cells (PMCs) and skeletogenesis of the sea urchin embryo. Interestingly, the gain-of-function of miR-1 leads to more severe PMC patterning and skeletal branching defects than its loss-of-function. The results suggest that miR-1 directly suppresses Ets1/2, Tbr, and VegfR7 of the skeletogenic gene regulatory network, and Nodal, and Wnt1 signaling components. This study identifies potential targets of miR-1 that impacts skeletogenesis and muscle formation and contributes to a deeper understanding of miR-1's function during development.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
4
|
Tregub PP, Ibrahimli I, Averchuk AS, Salmina AB, Litvitskiy PF, Manasova ZS, Popova IA. The Role of microRNAs in Epigenetic Regulation of Signaling Pathways in Neurological Pathologies. Int J Mol Sci 2023; 24:12899. [PMID: 37629078 PMCID: PMC10454825 DOI: 10.3390/ijms241612899] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
In recent times, there has been a significant increase in researchers' interest in the functions of microRNAs and the role of these molecules in the pathogenesis of many multifactorial diseases. This is related to the diagnostic and prognostic potential of microRNA expression levels as well as the prospects of using it in personalized targeted therapy. This review of the literature analyzes existing scientific data on the involvement of microRNAs in the molecular and cellular mechanisms underlying the development of pathologies such as Alzheimer's disease, cerebral ischemia and reperfusion injury, and dysfunction of the blood-brain barrier.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
- Research Center of Neurology, 125367 Moscow, Russia
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Alla B. Salmina
- Research Center of Neurology, 125367 Moscow, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
5
|
Bronchain O, Ducos B, Putzer H, Delagrange M, Laalami S, Philippe-Caraty L, Saroul K, Ciapa B. Natural antisense transcription of presenilin in sea urchin reveals a possible role for natural antisense transcription in the general control of gene expression during development. J Cell Sci 2023; 136:jcs261284. [PMID: 37345489 DOI: 10.1242/jcs.261284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023] Open
Abstract
One presenilin gene (PSEN) is expressed in the sea urchin embryo, in the vegetal pole of the gastrula and then mainly in cilia cells located around the digestive system of the pluteus, as we recently have reported. PSEN expression must be accurately regulated for correct execution of these two steps of development. While investigating PSEN expression changes in embryos after expansion of endoderm with LiCl or of ectoderm with Zn2+ by whole-mount in situ hybridization (WISH) and quantitative PCR (qPCR), we detected natural antisense transcription of PSEN. We then found that Endo16 and Wnt5, markers of endo-mesoderm, and of Hnf6 and Gsc, markers of ectoderm, are also sense and antisense transcribed. We discuss that general gene expression could depend on both sense and antisense transcription. This mechanism, together with the PSEN gene, should be included in gene regulatory networks (GRNs) that theorize diverse processes in this species. We suggest that it would also be relevant to investigate natural antisense transcription of PSEN in the field of Alzheimer's disease (AD) where the role of human PSEN1 and PSEN2 is well known.
Collapse
Affiliation(s)
- Odile Bronchain
- Paris-Saclay Institute of Neuroscience, CNRS, UMR CNRS 9197, Université Paris-Saclay, 75005 Paris, France
| | - Bertrand Ducos
- High Throughput qPCR Core Facility of the ENS, Université PSL, IBENS, Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Harald Putzer
- CNRS, Université Paris Cité, Expression Génétique Microbienne, IBPC, 75005 Paris, France
| | - Marine Delagrange
- High Throughput qPCR Core Facility of the ENS, Université PSL, IBENS, Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Soumaya Laalami
- CNRS, Université Paris Cité, Expression Génétique Microbienne, IBPC, 75005 Paris, France
| | - Laetitia Philippe-Caraty
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Krystel Saroul
- Institut CURIE, Université Paris-Saclay, INSERM U932, Immunité et Cancer, 91400 Orsay, France
| | - Brigitte Ciapa
- Paris-Saclay Institute of Neuroscience, CNRS, UMR CNRS 9197, Université Paris-Saclay, 75005 Paris, France
| |
Collapse
|
6
|
Konrad KD, Song JL. microRNA-124 regulates Notch and NeuroD1 to mediate transition states of neuronal development. Dev Neurobiol 2023; 83:3-27. [PMID: 36336988 PMCID: PMC10440801 DOI: 10.1002/dneu.22902] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/12/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022]
Abstract
MicroRNAs regulate gene expression by destabilizing target mRNA and/or inhibiting translation in animal cells. The ability to mechanistically dissect miR-124's function during specification, differentiation, and maturation of neurons during development within a single system has not been accomplished. Using the sea urchin embryo, we take advantage of the manipulability of the embryo and its well-documented gene regulatory networks (GRNs). We incorporated NeuroD1 as part of the sea urchin neuronal GRN and determined that miR-124 inhibition resulted in aberrant gut contractions, swimming velocity, and neuronal development. Inhibition of miR-124 resulted in an increased number of cells expressing transcription factors (TFs) associated with progenitor neurons and a concurrent decrease of mature and functional neurons. Results revealed that in the early blastula/gastrula stages, miR-124 regulates undefined factors during neuronal specification and differentiation. In the late gastrula/larval stages, miR-124 regulates Notch and NeuroD1 during the transition between neuronal differentiation and maturation. Overall, we have improved the neuronal GRN and identified miR-124 to play a prolific role in regulating various transitions of neuronal development.
Collapse
Affiliation(s)
- Kalin D Konrad
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
7
|
Wang S, Pan C, Ma X, Yang C, Tang L, Huang J, Wei X, Li H, Ma Y. Identification and Functional Verification Reveals that miR-195 Inhibiting THRSP to Affect Fat Deposition in Xinyang Buffalo. Front Genet 2022; 12:736441. [PMID: 35003205 PMCID: PMC8727870 DOI: 10.3389/fgene.2021.736441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
The buffalo population is extensive in China, but its meat quality is relatively inferior. Therefore, improving meat quality should be one of the breeding goals. microRNAs (miRNAs) play an essential regulatory role in the post-transcriptional expression of genes. Some studies have reported their function regulating genes related to fat deposition and adipocyte differentiation in cattle, but there is limited reports in buffalo. We performed small RNA transcriptome sequencing of Xinyang buffalo adipose tissue between calves and adults in this study. As a result, 282 mature miRNAs were significantly differentially expressed, and co-expression analysis showed that 454 miRNAs were significantly associated with developmental stages. Target gene identification, GO (gene ontology) annotation, and KEGG analysis of miRNAs showed that miR-195, miR-192, and miR-24-3p could target key genes for lipogenesis and thus regulate adipose deposition and differentiation. Among them, miR-195 was significantly upregulated in adipose tissue and induced adipocytes of adult buffaloes, and its overexpression significantly inhibited lipid accumulation in primary adipocytes. Dual-luciferase reporter gene analysis showed that miR-195 reduced the expression of thyroid hormone response protein (THRSP) by targeting its 3′ untranslated terminal region, suggesting that miR-195 may inhibit lipid accumulation in adipocytes by regulating THRSP. The results confirmed the reliability of predictive screening of miRNAs and provided theoretical support for buffalo fattening.
Collapse
Affiliation(s)
- Shuzhe Wang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China.,College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Cuili Pan
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Xiaojie Ma
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Chaoyun Yang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Lin Tang
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xuefeng Wei
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yun Ma
- Key Laboratory of Ruminant Molecular and Cellular Breeding of Ningxia Hui Autonomous Region, School of Agriculture, Ningxia University, Yinchuan, China.,College of Life Sciences, Xinyang Normal University, Xinyang, China
| |
Collapse
|
8
|
Li W, Wang SS, Shan BQ, Qin JB, Zhao HY, Tian ML, He H, Cheng X, Zhang XH, Jin GH. miR-103-3p targets Ndel1 to regulate neural stem cell proliferation and differentiation. Neural Regen Res 2022; 17:401-408. [PMID: 34269216 PMCID: PMC8463973 DOI: 10.4103/1673-5374.317987] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The regulation of adult neural stem cells (NSCs) is critical for lifelong neurogenesis. MicroRNAs (miRNAs) are a type of small, endogenous RNAs that regulate gene expression post-transcriptionally and influence signaling networks responsible for several cellular processes. In this study, miR-103-3p was transfected into neural stem cells derived from embryonic hippocampal neural stem cells. The results showed that miR-103-3p suppressed neural stem cell proliferation and differentiation, and promoted apoptosis. In addition, miR-103-3p negatively regulated NudE neurodevelopment protein 1-like 1 (Ndel1) expression by binding to the 3' untranslated region of Ndel1. Transduction of neural stem cells with a lentiviral vector overexpressing Ndel1 significantly increased cell proliferation and differentiation, decreased neural stem cell apoptosis, and decreased protein expression levels of Wnt3a, β-catenin, phosphor-GSK-3β, LEF1, c-myc, c-Jun, and cyclin D1, all members of the Wnt/β-catenin signaling pathway. These findings suggest that Ndel1 is a novel miR-103-3p target and that miR-103-3p acts by suppressing neural stem cell proliferation and promoting apoptosis and differentiation. This study was approved by the Animal Ethics Committee of Nantong University, China (approval No. 20200826-003) on August 26, 2020.
Collapse
Affiliation(s)
- Wen Li
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shan-Shan Wang
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Bo-Quan Shan
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jian-Bing Qin
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - He-Yan Zhao
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Mei-Ling Tian
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Hui He
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiang Cheng
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xin-Hua Zhang
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Guo-Hua Jin
- Department of Human Anatomy, Institute of Neurobiology, Nantong University; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education; Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
9
|
Li W, Liu J, Ji L, Tang Y, Qin J, Zhao H, Cheng X, Tian M, Jin G, He H. MiR-674-5p Suppresses the Proliferation and Migration of Glioma Cells by Targeting Cul4b. Neurochem Res 2021; 47:679-691. [PMID: 34779995 DOI: 10.1007/s11064-021-03476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
Glioma multiforme (GBM) is the most common malignant primary brain tumors. Despite the considerable advances in GBM treatment, it is still one of the most lethal forms of brain tumor. New clinical biomarkers and therapeutic targets are immediately required. MicroRNAs (miRNAs) are a class of small, evolutionarily conserved noncoding RNAs and have emerged as the key regulators of many cancers. Here in this study, we showed that miR-674-5p was probably an important regulator of glioma cell growth. After the transfection with miR-674-5p mimic or inhibitor, we found that the expression level of miR-674-5p was negatively related with cell proliferation and migration in C6 cells. Based on the prediction of the target genes of miR-674-5p on the website, we chose Cullin 4B (Cul4b), a gene upregulated in GBM, and proved that it was a target of miR-674-5p. In addition, we explored the role of miR-674-5p in glioma growth in vivo. Taken together, the present study indicated that miR-674-5p suppressed glioma cell proliferation and migration by targeting Cul4b.
Collapse
Affiliation(s)
- Wen Li
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Juan Liu
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Li Ji
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yi Tang
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jianbing Qin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Heyan Zhao
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiang Cheng
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Meiling Tian
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Guohua Jin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China. .,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong, Jiangsu, People's Republic of China. .,Co-Innovation Center of Neuroregeneration, Nantong, Jiangsu, People's Republic of China.
| | - Hui He
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Jiang Z, Zhang J. Mesenchymal stem cell-derived exosomes containing miR-145-5p reduce inflammation in spinal cord injury by regulating the TLR4/NF-κB signaling pathway. Cell Cycle 2021; 20:993-1009. [PMID: 33945431 DOI: 10.1080/15384101.2021.1919825] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
EXs (Exosomes) secreted by mesenchymal stem cells (MSCs) have the potential to treat spinal cord injury (SCI), this study aimed to further explore the therapeutic effect of EXs on SCI. Firstly, EXs were extracted from MSCs and analyzed with a transmission electron microscope. Next, MSCs with or without the miR-145-5p plasmid were injected into the SCI rat model, and then rat damage was evaluated by BBB score, HE staining and Nissl staining. And then Luciferase experiment verified the targeting relationship between miR-145-5p and TLR4. Furthermore, LPS-induced PC12 cells were established and incubated with Dil-labeled MSC-EXs to explore their effects on cell viability, apoptosis and inflammation through MTT, flow cytometry and ELISA, respectively. In addition, expressions of TLR4/NF-κB signaling pathway related factors were measured by qRT-PCR and Western blot. The results showed that after MSCs were successfully isolated, the existence of EXs in MSCs was confirmed. Moreover, MSC-EXs containing miR-145-5p improved functional recovery and reduced histopathological injury and inflammation in SCI rats. And MSC-EXs promoted miR-145-5p expression in spinal cord tissue and inhibited TLR4/NF-κB pathway activation in SCI rats. MSC-EXs inhibited LPS-induced inflammatory response and activation of the TLR4/NF-κB pathway in PC12 cells. In addition, we also found that miR-145-5p specifically targeted TLR4. TLR4 overexpression significantly reversed the effect of EX-miR-145-5p on maintaining PC12 cell viability, inhibiting apoptosis and inflammatory response, and activating TLR4/NF- κB pathway. In conclusion, mesenchymal stem cell-derived EXs containing miR-145-5p reduce inflammation in spinal cord injury by regulating the TLR4/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhensong Jiang
- Department of Spine Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| | - Jianru Zhang
- Department of Health Examination, Jinan Central Hospital Affiliated to Shandong University
| |
Collapse
|
11
|
Sampilo NF, Stepicheva NA, Song JL. microRNA-31 regulates skeletogenesis by direct suppression of Eve and Wnt1. Dev Biol 2021; 472:98-114. [PMID: 33484703 PMCID: PMC7956219 DOI: 10.1016/j.ydbio.2021.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
microRNAs (miRNAs) play a critical role in a variety of biological processes, including embryogenesis and the physiological functions of cells. Evolutionarily conserved microRNA-31 (miR-31) has been found to be involved in cancer, bone formation, and lymphatic development. We previously discovered that, in the sea urchin, miR-31 knockdown (KD) embryos have shortened dorsoventral connecting rods, mispatterned skeletogenic primary mesenchyme cells (PMCs) and shifted and expanded Vegf3 expression domain. Vegf3 itself does not contain miR-31 binding sites; however, we identified its upstream regulators Eve and Wnt1 to be directly suppressed by miR-31. Removal of miR-31's suppression of Eve and Wnt1 resulted in skeletal and PMC patterning defects, similar to miR-31 KD phenotypes. Additionally, removal of miR-31's suppression of Eve and Wnt1 results in an expansion and anterior shift in expression of Veg1 ectodermal genes, including Vegf3 in the blastulae. This indicates that miR-31 indirectly regulates Vegf3 expression through directly suppressing Eve and Wnt1. Furthermore, removing miR-31 suppression of Eve is sufficient to cause skeletogenic defects, revealing a novel regulatory role of Eve in skeletogenesis and PMC patterning. Overall, this study provides a proposed molecular mechanism of miR-31's regulation of skeletogenesis and PMC patterning through its cross-regulation of a Wnt signaling ligand and a transcription factor of the endodermal and ectodermal gene regulatory network.
Collapse
Affiliation(s)
- Nina Faye Sampilo
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA
| | - Nadezda A Stepicheva
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
12
|
Li J, Liu L, Cui Q, Zhou Y. Comparisons of MicroRNA Set Enrichment Analysis Tools on Cancer De-regulated miRNAs from TCGA Expression Datasets. Curr Bioinform 2021. [DOI: 10.2174/1574893615666200224095041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
De-regulation of microRNAs (miRNAs) is closely related to many complex
diseases, including cancers. In The Cancer Genome Atlas (TCGA), hundreds of differentially
expressed miRNAs are stored for each type of cancer, which are hard to be intuitively interpreted.
To date, several miRNA set enrichment tools have been tailored to predict the potential disease
associations and functions of de-regulated miRNAs, including the miRNA Enrichment Analysis and
Annotation tool (miEAA) and Tool for Annotations of human MiRNAs (TAM1.0 &TAM 2.0).
However, independent benchmarking of these tools is warranted to assess their effectiveness and
robustness, and the relationship between enrichment analysis results and the prognosis significance
of cancers.
Methods:
Based on differentially expressed miRNAs from expression profiles in TCGA, we
performed a series of tests and a comprehensive comparison of the enrichment analysis results of
miEAA, TAM 1.0 and TAM 2.0. The work focused on the performance of the three tools, disease
similarity based on miRNA-disease associations from the enrichment analysis results, the
relationship between the overrepresented miRNAs from enrichment analysis results and the
prognosis significance of cancers.
Results:
The main results show that TAM 2.0 is more likely to identify the regulatory disease’s
functions of de-regulated miRNA; it is feasible to calculate disease similarity based on enrichment
analysis results of TAM 2.0; and there is weak positive correlation between the occurrence
frequency of miRNAs in the TAM 2.0 enrichment analysis results and the prognosis significance of
the cancer miRNAs.
Conclusion:
Our comparison results not only provide a reference for biomedical researchers to
choose appropriate miRNA set enrichment analysis tools to achieve their purpose but also
demonstrate that the degree of overrepresentation of miRNAs could be a supplementary indicator of
the disease similarity and the prognostic effect of cancer miRNAs.
Collapse
Affiliation(s)
- Jianwei Li
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
| | - Leibo Liu
- Institute of Computational Medicine, School of Artificial Intelligence, Hebei University of Technology, Tianjin 300401, China
| | - Qinghua Cui
- Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Noncoding RNA Medicine, Peking University, Beijing 100191, China
| | - Yuan Zhou
- Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Noncoding RNA Medicine, Peking University, Beijing 100191, China
| |
Collapse
|
13
|
Fu Y, Wang Y, Bi K, Yang L, Sun Y, Li B, Liu Z, Zhang F, Li Y, Feng C, Bi Z. MicroRNA-208a-3p promotes osteosarcoma progression via targeting PTEN. Exp Ther Med 2020; 20:255. [PMID: 33178353 PMCID: PMC7651880 DOI: 10.3892/etm.2020.9385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is a malignant bone tumor with a poor prognosis. Accumulated evidence has suggested that microRNAs (miRNAs/miRs) may function as either oncogenes or tumor suppressors, which are associated with tumorigenesis and the progression of different types of cancer. In the present study, the role of miR-208a-3p in OS was investigated. The expression levels of miR-208a-3p in OS tissues and cell lines were determined via reverse transcription-quantitative PCR (RT-qPCR). MTT and colony formation assays were performed to verify the proliferation rate of OS cells. In addition, the effects of miR-208a-3p on the migration and invasion of OS cells were revealed using wound-healing and Transwell assays, respectively. Furthermore, the association between miR-208a-3p and phosphatase and tensin homolog (PTEN) 3'-untranslated region was determined via luciferase reporter assays, western blot and RT-qPCR analysis. The results indicated that miR-208a-3p was upregulated in OS tissues and cell lines compared with adjacent normal tissues and human osteoblastic cells, respectively. miR-208a-3p overexpression promoted and miR-208a-3p knockdown inhibited OS cells proliferation and metastatic potential. Additionally, PTEN was validated as a direct target of miR-208a-3p and its expression was negatively associate with that of miR-208a-3p in OS cells. Taken together, these results may suggest that miR-208a-3p promoted OS cells proliferation and metastatic potential via targeting PTEN. Therefore, miR-208a-3p may be considered as a diagnostic biomarker for OS.
Collapse
Affiliation(s)
- Yutuo Fu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China.,Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Yan Wang
- Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Ke Bi
- Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Lei Yang
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Yi Sun
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Boyuan Li
- Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Zhenzhong Liu
- Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Fulin Zhang
- Department of Orthopedics, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150000, P.R. China
| | - Yuan Li
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Chao Feng
- Department of Pharmacology, The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| | - Zhenggang Bi
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, P.R. China
| |
Collapse
|
14
|
Liu L. The anti-inflammatory effect of miR-16 through targeting C- reactive protein is regulated by HuR in vascular smooth muscle cells. Biochem Biophys Res Commun 2020; 528:636-643. [PMID: 32513543 DOI: 10.1016/j.bbrc.2020.05.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
Abstract
Atherosclerosis (AS) is the main pathological basis of coronary heart disease (CHD). Vascular smooth muscle cells (VMSCs) proliferation, migration and inflammatory response are the cytopathologic basis of AS. MiR-16 has been suggested to be closely associated with cell proliferation and inflammation. The regulatory role of the RNA binding protein HuR on miR-16 has been reported in colon cancer. However, the underlying roles of miR-16 on VMSCs and the regulatory function of HuR on miR-16 in VMSCs remain unknown. In this study, we found that the expression of miR-16 reduced and the expression of C-reactive protein and HuR increased when contractile VSMCs transformed into synthetic VMSCs. Furthermore, miR-16 impeded cell proliferation and inflammation via targeting CRP in VMSCs. HuR down-regulated miR-16 expression and impeded its influence on VMSCs. This study might provide an opportunity to develop a new effective target for the treatment of CHD.
Collapse
Affiliation(s)
- Liang Liu
- Department of Cardiovasology, PKUCare Luzhong Hospital, No. 65, Taigong Road, Linzi District, 255400, Zibo, China.
| |
Collapse
|
15
|
Da CM, Gong CY, Nan W, Zhou KS, Wu ZL, Zhang HH. The role of long non-coding RNA MIAT in cancers. Biomed Pharmacother 2020; 129:110359. [PMID: 32535389 DOI: 10.1016/j.biopha.2020.110359] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/25/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), a kind of non-coding single-strand RNAs, play an important role as carcinogenic genes or tumor suppressors in the development of human cancer. Myocardial infarction-associated transcript (MIAT) was first identified as a lncRNA in 2006 and originally isolated as a candidate gene for myocardial infarction. Later, it was reported that MIAT exhibits regulatory effects on the human cell cycle. Since its discovery, MIAT has also been identified as a carcinogenic regulator in many malignant tumors. High expression of MIAT is related to the clinicopathological characteristics of cancer patients. It can also regulate cell proliferation, invasion, metastasis, and anti-apoptosis through a variety of mechanisms. Therefore, MIAT is considered a potential biomarker and therapeutic target in cancer. In this review, we summarize the biological function, mechanism, and potential clinical significance of MIAT during tumorigenesis.
Collapse
Affiliation(s)
- Chao-Ming Da
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Chao-Yang Gong
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Wei Nan
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China
| | - Kai-Sheng Zhou
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China
| | - Zuo-Long Wu
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China
| | - Hai-Hong Zhang
- The Second Clinical Medical College of Lanzhou University, 82 Cuiying Men, Lanzhou 730030, PR China; Orthopaedics Key Laboratory of Gansu Province, Lanzhou 730000, PR China.
| |
Collapse
|
16
|
Sun B, Liu C, Li H, Zhang L, Luo G, Liang S, Lü M. Research progress on the interactions between long non-coding RNAs and microRNAs in human cancer. Oncol Lett 2019; 19:595-605. [PMID: 31897175 PMCID: PMC6923957 DOI: 10.3892/ol.2019.11182] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022] Open
Abstract
Numerous types of molecular mechanisms mediate the development of cancer. Non-coding RNAs (ncRNAs) are being increasingly recognized to play important role in mediating the development of diseases, including cancer. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are the two most widely studied ncRNAs. Thus far, lncRNAs are known to have biological roles through a variety of mechanisms, including genetic imprinting, chromatin remodeling, cell cycle control, splicing regulation, mRNA decay and translational regulation, and miRNAs regulate gene expression through the degradation of mRNAs and lncRNAs. Although ncRNAs account for a major proportion of the total RNA, the mechanisms underlying the physiological or pathological processes mediated by various types of ncRNAs, and the specific interaction mechanisms between miRNAs and lncRNAs in various physiological and pathological processes, remain largely unknown. Thus, further research in this field is required. In general, the interaction mechanisms between miRNAs and lncRNAs in human cancer have become important research topics, and the study thereof has led to the recent development of related technologies. By providing examples and descriptions, and performing chart analysis, the present study aimed to review the interaction mechanisms and research approaches for these two types of ncRNAs, as well as their roles in the occurrence and development of cancer. These details have far-reaching significance for the utilization of these molecules in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Binyu Sun
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Chunxia Liu
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Hao Li
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Lu Zhang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Gang Luo
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Sicheng Liang
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Muhan Lü
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
17
|
Renal Ca 2+ and Water Handling in Response to Calcium Sensing Receptor Signaling: Physiopathological Aspects and Role of CaSR-Regulated microRNAs. Int J Mol Sci 2019; 20:ijms20215341. [PMID: 31717830 PMCID: PMC6862519 DOI: 10.3390/ijms20215341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca2+) is a universal and vital intracellular messenger involved in a diverse range of cellular and biological processes. Changes in the concentration of extracellular Ca2+ can disrupt the normal cellular activities and the physiological function of these systems. The calcium sensing receptor (CaSR) is a unique G protein-coupled receptor (GPCR) activated by extracellular Ca2+ and by other physiological cations, aminoacids, and polyamines. CaSR is the main controller of the extracellular Ca2+ homeostatic system by regulating parathyroid hormone (PTH) secretion and, in turn, Ca2+ absorption and resorption. Recent advances highlight novel signaling pathways activated by CaSR signaling involving the regulation of microRNAs (miRNAs). miRNAs are naturally-occurring small non-coding RNAs that regulate post-transcriptional gene expression and are involved in several diseases. We previously described that high luminal Ca2+ in the renal collecting duct attenuates short-term vasopressin-induced aquaporin-2 (AQP2) trafficking through CaSR activation. Moreover, we demonstrated that CaSR signaling reduces AQP2 abundance via AQP2-targeting miRNA-137. This review summarizes the recent data related to CaSR-regulated miRNAs signaling pathways in the kidney.
Collapse
|
18
|
Liang F, Fu X, Wang L. miR-5590-3p-YY1 feedback loop promotes the proliferation and migration of triple-negative breast cancer cells. J Cell Biochem 2019; 120:18415-18424. [PMID: 31190375 DOI: 10.1002/jcb.29158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 01/13/2023]
Abstract
Lacking of diagnostic and prognostic biomarkers is a significant reason for the poor prognosis of patients with triple-negative breast cancer (TNBC). MicroRNAs (miRNAs) have been discovered to engage in the tumorigenesis and development of TNBC. miR-5590-3p has been found to be involved in the development of gastric cancer, but its role and underlying mechanism in TNBC remain obscure. In this study, it was discovered that miR-5590-3p was downregulated in TNBC tissues and cells. Function assays confirmed that miR-5590-3p overexpression inhibited cell proliferation, migration, and epithelial-mesenchymal transition (EMT) process as well as promoted cell apoptosis in TNBC. Moreover, YY1 could bind with the promoter of miR-5590-3p and overexpression of YY1 inhibited the transcription of miR-5590-3p. It was found that YY1 acted as a downstream target gene to bind with miR-5590-3p and was negatively regulated by miR-5590-3p. Finally, it was discovered that overexpression of YY1 could partially rescue the miR-5590-3p overexpression-mediated inhibitive effect on TNBC progression. Taken together these results, it can be concluded that miR-5590-3p-YY1 feedback loop promoted the proliferation and migration of TNBC.
Collapse
Affiliation(s)
- Feng Liang
- Department of Anaesthesia, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Xin Fu
- Department of Anaesthesia, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Linlin Wang
- Department of Ultrasonography, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Lo Rito M. Commentary: Are microRNAs the new wave of biomarkers in congenital heart surgery? J Thorac Cardiovasc Surg 2019; 159:1543. [PMID: 31160111 DOI: 10.1016/j.jtcvs.2019.04.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/17/2019] [Indexed: 11/15/2022]
Affiliation(s)
- Mauro Lo Rito
- Department of Congenital Cardiac Surgery, IRCCS Policlinico San Donato, San Donato Milanese, Italy.
| |
Collapse
|