1
|
Voronkina A, Cárdenas P, Adam J, Meissner H, Nowacki K, Joseph Y, Tabachnick KR, Ehrlich H. Biosilica 3D Micromorphology of Geodiidae Sponge Spicules Is Patterned by F-Actin. Microsc Res Tech 2025; 88:1701-1711. [PMID: 39894974 DOI: 10.1002/jemt.24798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 12/26/2024] [Accepted: 12/28/2024] [Indexed: 02/04/2025]
Abstract
Demosponges (phylum Porifera) are among the first multicellular organisms on the planet and represent a unique archive of biosilica-based skeletal structures with species-specific microstructures called spicules. With more than 80 morphotypes, this class of sponges is recognized as a unique source of amorphous silica with superficial ornamentation patterned by organic phases. In this study, we investigated spicules of selected representatives of the family Geodiidae (order Tetractinellida), to identify F-actin-containing axial filaments within these 3D skeletal microconstructs defined as oxyspherasters and sterrasters. Their desilicification using 10% HF leads to isolation of multifilamentous, radially oriented organic matrices, which resemble the shape and size of the original spicules. Our data show that highly specific indicators of F-actin such as iFluorTM 594-Phalloidin, iFluorTM 488-Phalloidin, as well as iFluorTM 350-Phalloidin unambiguously confirm its localization within demineralized oxyspherasters and sterrasters of 11 diverse demosponges species belonging to the subfamily Geodiinae (genera Geodia, Rhabdastrella) and the subfamily Erylinae (genera Caminella, Caminus, Erylus, Pachymatisma). Well-defined periodicity in Geodia cydonium sterrasters actin filaments has been observed using atomic force microscopy (AFM) for the first time. The findings of F-actin as a possible pattern driver in spicules of geodiids brings additional light to our knowledge of spiculogenesis in this group. However, no specific actin structures were found between the geodiid subfamilies or genera thereby suggesting a common actin process, present already at the emergence of the family (~170 million years ago).
Collapse
Affiliation(s)
- Alona Voronkina
- Pharmacy Department, National Pirogov Memorial Medical University, Vinnytsia, Ukraine
- Institute for Nanoscale and Biobased Materials, TU Bergakademie Freiberg, Freiberg, Germany
| | - Paco Cárdenas
- Pharmacognosy, Department of Pharmaceutical Biosciences, Museum of Evolution, Uppsala University, Uppsala, Sweden
| | - Jörg Adam
- Institute for Nanoscale and Biobased Materials, TU Bergakademie Freiberg, Freiberg, Germany
| | - Heike Meissner
- Department of Prosthetic Dentistry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Krzysztof Nowacki
- Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Poznan, Poland
| | - Yvonne Joseph
- Institute for Nanoscale and Biobased Materials, TU Bergakademie Freiberg, Freiberg, Germany
| | | | - Hermann Ehrlich
- Center for Advanced Technology, Adam Mickiewicz University in Poznan, Poznan, Poland
- Institute of Chemical Technology, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| |
Collapse
|
2
|
Layous M, Gildor T, Nehrer T, Qassem A, Wolfenson H, Ben-Tabou de-Leon S. A mechanosensitive circuit of FAK, ROCK, and ERK controls biomineral growth and morphology in the sea urchin embryo. Proc Natl Acad Sci U S A 2025; 122:e2408628121. [PMID: 39739788 PMCID: PMC11725891 DOI: 10.1073/pnas.2408628121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 12/01/2024] [Indexed: 01/02/2025] Open
Abstract
Biomineralization is the utilization of different minerals by a vast array of organisms to form hard tissues and shape them in various forms. Within this diversity, a common feature of all mineralized tissues is their high stiffness, implying that mechanosensing could be commonly used in biomineralization. Yet, the role of mechanosensing in biomineralization is far from clear. Here, we use the sea urchin larval skeletogenesis to investigate the role of substrate stiffness and focal adhesion kinase (FAK) in biomineralization. We demonstrate that substrate stiffness alters spicule morphology and growth, indicating a mechanosensitive response during skeletogenesis. We show that active FAK, F-actin, and vinculin are enriched around the spicules, indicating the formation of focal adhesion complexes and suggesting that the cells sense the mechanical properties of the biomineral. Furthermore, we find that FAK activity is regulated by Rho-associated protein kinase (ROCK) and is crucial for skeletal growth and normal branching. FAK and ROCK activate extracellular signal-regulated kinase (ERK), which regulates skeletogenic gene expression at the tips of the spicules. Thus, the FAK-ROCK-ERK circuit seems to provide essential mechanical feedback on spicule elongation to the skeletogenic gene regulatory network, enabling skeletal growth. Remarkably, the same factors govern mammalian osteoblast differentiation in vitro and pathological calcification in vivo. Thus, this study highlights a common mechanotransduction pathway in biomineralization that was probably independently co-opted across different organisms to shape mineralized structures in metazoans.
Collapse
Affiliation(s)
- Majed Layous
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| | - Tsvia Gildor
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| | - Tovah Nehrer
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| | - Areen Qassem
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| | - Haguy Wolfenson
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion, Haifa3525433, Israel
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa3498838, Israel
| |
Collapse
|
3
|
Hijaze E, Gildor T, Seidel R, Layous M, Winter M, Bertinetti L, Politi Y, Ben-Tabou de-Leon S. ROCK and the actomyosin network control biomineral growth and morphology during sea urchin skeletogenesis. eLife 2024; 12:RP89080. [PMID: 38573316 PMCID: PMC10994658 DOI: 10.7554/elife.89080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Biomineralization had apparently evolved independently in different phyla, using distinct minerals, organic scaffolds, and gene regulatory networks (GRNs). However, diverse eukaryotes from unicellular organisms, through echinoderms to vertebrates, use the actomyosin network during biomineralization. Specifically, the actomyosin remodeling protein, Rho-associated coiled-coil kinase (ROCK) regulates cell differentiation and gene expression in vertebrates' biomineralizing cells, yet, little is known on ROCK's role in invertebrates' biomineralization. Here, we reveal that ROCK controls the formation, growth, and morphology of the calcite spicules in the sea urchin larva. ROCK expression is elevated in the sea urchin skeletogenic cells downstream of the Vascular Endothelial Growth Factor (VEGF) signaling. ROCK inhibition leads to skeletal loss and disrupts skeletogenic gene expression. ROCK inhibition after spicule formation reduces the spicule elongation rate and induces ectopic spicule branching. Similar skeletogenic phenotypes are observed when ROCK is inhibited in a skeletogenic cell culture, indicating that these phenotypes are due to ROCK activity specifically in the skeletogenic cells. Reduced skeletal growth and enhanced branching are also observed under direct perturbations of the actomyosin network. We propose that ROCK and the actomyosin machinery were employed independently, downstream of distinct GRNs, to regulate biomineral growth and morphology in Eukaryotes.
Collapse
Affiliation(s)
- Eman Hijaze
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| | - Ronald Seidel
- B CUBE Center for Molecular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Majed Layous
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| | - Mark Winter
- Department of Electrical Engineering, Computer Science and Mathematics, Technische Universiteit DelftDelftNetherlands
| | - Luca Bertinetti
- B CUBE Center for Molecular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Yael Politi
- B CUBE Center for Molecular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| |
Collapse
|
4
|
Chang WW, Thies AB, Tresguerres M, Hu MY. Soluble adenylyl cyclase coordinates intracellular pH homeostasis and biomineralization in calcifying cells of a marine animal. Am J Physiol Cell Physiol 2023; 324:C777-C786. [PMID: 36779665 DOI: 10.1152/ajpcell.00524.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Biomineralizing cells concentrate dissolved inorganic carbon (DIC) and remove protons from the site of mineral precipitation. However, the molecular regulatory mechanisms that orchestrate pH homeostasis and biomineralization of calcifying cells are poorly understood. Here, we report that the acid-base sensing enzyme soluble adenylyl cyclase (sAC) coordinates intracellular pH (pHi) regulation in the calcifying primary mesenchyme cells (PMCs) of sea urchin larvae. Single-cell transcriptomics, in situ hybridization, and immunocytochemistry elucidated the spatiotemporal expression of sAC during skeletogenesis. Live pHi imaging of PMCs revealed that the downregulation of sAC activity with two structurally unrelated small molecules inhibited pHi regulation of PMCs, an effect that was rescued by the addition of cell-permeable cAMP. Pharmacological sAC inhibition also significantly reduced normal spicule growth and spicule regeneration, establishing a link between PMC pHi regulation and biomineralization. Finally, increased expression of sAC mRNA was detected during skeleton remineralization and exposure to CO2-induced acidification. These findings suggest that transcriptional regulation of sAC is required to promote remineralization and to compensate for acidic stress. This work highlights the central role of sAC in coordinating acid-base regulation and biomineralization in calcifying cells of a marine animal.
Collapse
Affiliation(s)
| | - Angus B Thies
- Scripps Institution of Oceanography, University of California San Diego, California, United States
| | - Martin Tresguerres
- Scripps Institution of Oceanography, University of California San Diego, California, United States
| | - Marian Y Hu
- Institute of Physiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
5
|
Winter MR, Morgulis M, Gildor T, Cohen AR, Ben-Tabou de-Leon S. Calcium-vesicles perform active diffusion in the sea urchin embryo during larval biomineralization. PLoS Comput Biol 2021; 17:e1008780. [PMID: 33617532 PMCID: PMC7932551 DOI: 10.1371/journal.pcbi.1008780] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/04/2021] [Accepted: 02/08/2021] [Indexed: 11/18/2022] Open
Abstract
Biomineralization is the process by which organisms use minerals to harden their tissues and provide them with physical support. Biomineralizing cells concentrate the mineral in vesicles that they secret into a dedicated compartment where crystallization occurs. The dynamics of vesicle motion and the molecular mechanisms that control it, are not well understood. Sea urchin larval skeletogenesis provides an excellent platform for investigating the kinetics of mineral-bearing vesicles. Here we used lattice light-sheet microscopy to study the three-dimensional (3D) dynamics of calcium-bearing vesicles in the cells of normal sea urchin embryos and of embryos where skeletogenesis is blocked through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR). We developed computational tools for displaying 3D-volumetric movies and for automatically quantifying vesicle dynamics. Our findings imply that calcium vesicles perform an active diffusion motion in both, calcifying (skeletogenic) and non-calcifying (ectodermal) cells of the embryo. The diffusion coefficient and vesicle speed are larger in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. These differences are possibly due to the distinct mechanical properties of the two tissues, demonstrated by the enhanced f-actin accumulation and myosinII activity in the ectodermal cells compared to the skeletogenic cells. Vesicle motion is not directed toward the biomineralization compartment, but the vesicles slow down when they approach it, and probably bind for mineral deposition. VEGFR inhibition leads to an increase of vesicle volume but hardly changes vesicle kinetics and doesn’t affect f-actin accumulation and myosinII activity. Thus, calcium vesicles perform an active diffusion motion in the cells of the sea urchin embryo, with diffusion length and speed that inversely correlate with the strength of the actomyosin network. Overall, our studies provide an unprecedented view of calcium vesicle 3D-dynamics and point toward cytoskeleton remodeling as an important effector of the motion of mineral-bearing vesicles. Biomineralization is a widespread, fundamental process by which organisms use minerals to harden their tissues. Mineral-bearing vesicles were observed in biomineralizing cells and play an essential role in biomineralization, yet little is known about their three-dimensional (3D) dynamics. Here we quantify 3D-vesicle-dynamics during calcite skeleton formation in sea urchin larvae, using lattice-light-sheet microscopy. We discover that calcium vesicles perform a diffusive motion in both calcifying and non-calcifying cells of the embryo. The diffusion coefficient and vesicle speed are higher in the mesenchymal skeletogenic cells compared to the epithelial ectodermal cells. This difference is possibly due to the higher rigidity of the ectodermal cells as demonstrated by the enhanced signal of f-actin and myosinII activity in these cells compared to the skeletogenic cells. The motion of the vesicles in the skeletogenic cells, is not directed toward the biomineralization compartment but the vesicles slow down near it, possibly to deposit their content. Blocking skeletogenesis through the inhibition of Vascular Endothelial Growth Factor Receptor (VEGFR), increases vesicle volume but doesn’t change the diffusion mode and the cytoskeleton markers in the cells. Our studies reveal the active diffusive motion of mineral bearing vesicles that is apparently defined by the mechanical properties of the cells.
Collapse
Affiliation(s)
- Mark R. Winter
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
- * E-mail: (MRW); (SBD)
| | - Miri Morgulis
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
| | - Tsvia Gildor
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
| | - Andrew R. Cohen
- Dept of Electrical Engineering, Drexel University, Pennsylvania, United States of America
| | - Smadar Ben-Tabou de-Leon
- Marine Biology Department, Charney School of Marine Sciences, the University of Haifa, Haifa, Israel
- * E-mail: (MRW); (SBD)
| |
Collapse
|