1
|
Matye D, Leak J, Woolbright BL, Taylor JA. Preclinical models of bladder cancer: BBN and beyond. Nat Rev Urol 2024; 21:723-734. [PMID: 38769130 DOI: 10.1038/s41585-024-00885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 05/22/2024]
Abstract
Preclinical modelling is a crucial component of advancing the understanding of cancer biology and therapeutic development. Several models exist for understanding the pathobiology of bladder cancer and evaluating therapeutics. N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-induced bladder cancer is a commonly used model that recapitulates many of the features of human disease. Particularly in mice, BBN is a preferred laboratory model owing to a high level of reproducibility, high genetic fidelity to the human condition, and its relative ease of use. However, important aspects of the model are often overlooked in laboratory studies. Moreover, the advent of new models has yielded a variety of methodologies that complement the use of BBN. Toxicokinetics, histopathology, molecular genetics and sex can differ between available models and are important factors to consider in bladder cancer modelling.
Collapse
Affiliation(s)
- David Matye
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Juliann Leak
- School of Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Benjamin L Woolbright
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA
| | - John A Taylor
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS, USA.
- Department of Urology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
2
|
Alhozeel B, Pandey SK, Shteinfer-Kuzmine A, Santhanam M, Shoshan-Barmatz V. Silencing the Mitochondrial Gatekeeper VDAC1 as a Potential Treatment for Bladder Cancer. Cells 2024; 13:627. [PMID: 38607066 PMCID: PMC11012128 DOI: 10.3390/cells13070627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
The strategy for treating bladder cancer (BC) depends on whether there is muscle invasion or not, with the latter mostly treated with intravesical therapy, such as with bacillus Calmette-Guérin (BCG). However, BCG treatment is unsuccessful in 70% of patients, who are then subjected to radical cystectomy. Although immune-checkpoint inhibitors have been approved as a second-line therapy for a subset of BC patients, these have failed to meet primary endpoints in clinical trials. Thus, it is crucial to find a new treatment. The mitochondrial gatekeeper protein, the voltage-dependent anion channel 1 (VDAC1), mediates metabolic crosstalk between the mitochondria and cytosol and is involved in apoptosis. It is overexpressed in many cancer types, as shown here for BC, pointing to its significance in high-energy-demanding cancer cells. The BC cell lines UM-UC3 and HTB-5 express high VDAC1 levels compared to other cancer cell lines. VDAC1 silencing in these cells using siRNA that recognizes both human and mouse VDAC1 (si-m/hVDAC1-B) reduces cell viability, mitochondria membrane potential, and cellular ATP levels. Here, we used two BC mouse models: subcutaneous UM-UC3 cells and chemically induced BC using the carcinogen N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Subcutaneous UM-UC3-derived tumors treated with si-m/hVDAC1 showed inhibited tumor growth and reprogrammed metabolism, as reflected in the reduced expression of metabolism-related proteins, including Glut1, hexokinase, citrate synthase, complex-IV, and ATP synthase, suggesting reduced metabolic activity. Furthermore, si-m/hVDAC1-B reduced the expression levels of cancer-stem-cell-related proteins (cytokeratin-14, ALDH1a), modifying the tumor microenvironment, including decreased angiogenesis, extracellular matrix, tumor-associated macrophages, and inhibited epithelial-mesenchymal transition. The BBN-induced BC mouse model showed a clear carcinoma, with damaged bladder morphology and muscle-invasive tumors. Treatment with si-m/hVDAC1-B encapsulated in PLGA-PEI nanoparticles that were administered intravesically directly to the bladder showed a decreased tumor area and less bladder morphology destruction and muscle invasion. Overall, the obtained results point to the potential of si-m/hVDAC1-B as a possible therapeutic tool for treating bladder cancer.
Collapse
Affiliation(s)
- Belal Alhozeel
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.A.); (S.K.P.); (M.S.)
| | - Swaroop Kumar Pandey
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.A.); (S.K.P.); (M.S.)
| | - Anna Shteinfer-Kuzmine
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Manikandan Santhanam
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.A.); (S.K.P.); (M.S.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| | - Varda Shoshan-Barmatz
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (B.A.); (S.K.P.); (M.S.)
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel;
| |
Collapse
|
3
|
Lee S, Jue M, Lee K, Paulson B, Oh J, Cho M, Kim JK. Early-stage diagnosis of bladder cancer using surface-enhanced Raman spectroscopy combined with machine learning algorithms in a rat model. Biosens Bioelectron 2024; 246:115915. [PMID: 38081101 DOI: 10.1016/j.bios.2023.115915] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/24/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
Early diagnosis and accurate assessment of tumor development facilitate early bladder cancer resection and initiation of drug therapy. This study enabled an early, accurate, label-free, noninvasive diagnosis of bladder tumors by analyzing nano-biomarkers in a single drop of urine through surface-enhanced Raman spectroscopy (SERS). In a standard N-butyl-N-4-hydroxybutyl nitrosamine-induced rat model of bladder cancer, cancer stage and polyp tumor development were monitored using a small endoscope with a diameter of 1.2 mm in a minimally invasive manner without the need to kill the rats. Samples were divided into cancer-free, early-stage, and polyp-form cancer. Training data were classified according to micro-cystoscopic 5-aminolevulinic acid fluorescence diagnosis, and specimens were postmortem verified through histopathological analysis. A drop of urine from each sample group was placed on an Au-coated zinc oxide nanoporous chip to filter nano-biomaterials and selectively enhance the Raman signals of nanoscale analytes via SERS. Principal component analysis was used to reduce the dimensionality of the collected Raman spectra, and partial least squares discriminant analysis was used to find diagnostic clusters based on the labeled samples. The combination of SERS and machine learning achieved an accuracy ≥99.6% in diagnosing both early- and polyp-stage bladder tumors. With an area under the receiver operating characteristic curve greater than 0.996, the accuracy of the diagnosis in the rat model suggests that SERS-based diagnostic methods are promising when coupled with machine learning. Low-cost, label-free, and noninvasive surface-enhanced Raman spectra are ideal for developing clinically relevant point-of-care diagnostic techniques.
Collapse
Affiliation(s)
- Sanghwa Lee
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Miyeon Jue
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea; Apollon, Inc., 68 Achasan-ro, Seongdong-gu, Seoul, 05505, Republic of Korea
| | - Kwanhee Lee
- Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, 05505, Republic of Korea
| | - Bjorn Paulson
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea; Morgridge Institute for Research, Madison, WI, 53715, USA
| | - Jeongmin Oh
- Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, 05505, Republic of Korea
| | - Minju Cho
- Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, 05505, Republic of Korea
| | - Jun Ki Kim
- Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea; Department of Biomedical Engineering, College of Medicine, University of Ulsan, Seoul, 05505, Republic of Korea.
| |
Collapse
|
4
|
Bošković M, Roje B, Chung FFL, Gelemanović A, Cahais V, Cuenin C, Khoueiry R, Vilović K, Herceg Z, Terzić J. DNA Methylome Changes of Muscle- and Neuronal-Related Processes Precede Bladder Cancer Invasiveness. Cancers (Basel) 2022; 14:487. [PMID: 35158756 PMCID: PMC8833512 DOI: 10.3390/cancers14030487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is the ninth leading cause of cancer death with one of the highest recurrence rates among all cancers. One of the main risks for BC development is exposure to nitrosamines present in tobacco smoke or in other products. Aberrant epigenetic (DNA methylation) changes accompanied by deregulated gene expression are an important element of cancer pathogenesis. Therefore, we aimed to determine DNA methylation signatures and their impacts on gene expression in mice treated with N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN), a carcinogen similar to compounds found in tobacco smoke. Following BBN administration mice developed non-invasive or invasive bladder cancers. Surprisingly, muscle- and neuronal-related pathways emerged as the most affected in those tumors. Hypo- and hypermethylation changes were present within non-invasive BC, across CpGs mapping to the genes involved in muscle- and neuronal-related pathways, however, methylation differences were not sufficient to affect the expression of the majority of associated genes. Conversely, invasive tumors displayed hypermethylation changes that were linked with alterations in gene expression profiles. Together, these findings indicate that bladder cancer progression could be revealed through methylation profiling at the pre-invasive cancer stage that could assist monitoring of cancer patients and guide novel therapeutic approaches.
Collapse
Affiliation(s)
- Maria Bošković
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.B.); (B.R.); (K.V.)
| | - Blanka Roje
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.B.); (B.R.); (K.V.)
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France; (F.F.-L.C.); (V.C.); (C.C.); (R.K.)
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Selangor, Malaysia
| | - Andrea Gelemanović
- Biology of Robustness Group, Mediterranean Institute for Life Sciences (MedILS), Šetalište Ivana Meštrovića 45, 21000 Split, Croatia;
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France; (F.F.-L.C.); (V.C.); (C.C.); (R.K.)
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France; (F.F.-L.C.); (V.C.); (C.C.); (R.K.)
| | - Rita Khoueiry
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France; (F.F.-L.C.); (V.C.); (C.C.); (R.K.)
| | - Katarina Vilović
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.B.); (B.R.); (K.V.)
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, 69008 Lyon, France; (F.F.-L.C.); (V.C.); (C.C.); (R.K.)
| | - Janoš Terzić
- Laboratory for Cancer Research, University of Split School of Medicine, Šoltanska 2, 21000 Split, Croatia; (M.B.); (B.R.); (K.V.)
| |
Collapse
|