1
|
Gierek M, Łabuś W, Słaboń A, Ziółkowska K, Ochała-Gierek G, Kitala D, Szyluk K, Niemiec P. Co-Graft of Acellular Dermal Matrix and Split Thickness Skin Graft-A New Reconstructive Surgical Method in the Treatment of Hidradenitis Suppurativa. Bioengineering (Basel) 2022; 9:389. [PMID: 36004913 PMCID: PMC9404734 DOI: 10.3390/bioengineering9080389] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Hidradenitis suppurativa is a chronic disease that significantly reduces patients' quality of life. Patients are chronically treated with systemic therapies, which are often ineffective. Surgical treatment for severe cases of hidradenitis suppurativa is one option for affected patients. Surgical treatment has its limitations, and wound closure may be particularly problematic. This requires the use of reconstructive techniques. The methods of choice for wound closure are split-thickness skin grafts or local flaps reconstructions. However, each method has its limitations. This is a presentation of a new reconstructive surgical method in hidradenitis suppurativa surgery: the use of a co-graft of Acellular dermal matrix and split thickness skin graft as a novel method in wound closure after wide excisions, based on two cases. The results of this method are very promising: we achieved very fast wound closure with good aesthetic results regarding scar formation. In this paper, we used several examinations: laser speckle analysis, cutometer tests, and health-related quality of life (QoL) questionnaire to check the clinical impact of this method. Our initial results are very encouraging. ADM with STSG as a co-graft could be widely used in reconstructive surgery. This is a preliminary study, which should be continued in further, extended research.
Collapse
Affiliation(s)
- Marcin Gierek
- Center for Burns Treatment, ul. Jana Pawła II 2, 41-100 Siemianowice Śląskie, Poland
| | - Wojciech Łabuś
- Center for Burns Treatment, ul. Jana Pawła II 2, 41-100 Siemianowice Śląskie, Poland
| | - Anna Słaboń
- Center for Burns Treatment, ul. Jana Pawła II 2, 41-100 Siemianowice Śląskie, Poland
| | - Karolina Ziółkowska
- Center for Burns Treatment, ul. Jana Pawła II 2, 41-100 Siemianowice Śląskie, Poland
| | - Gabriela Ochała-Gierek
- Dermatology Department, City Hospital in Sosnowiec, ul. Zegadłowicza 3, 41-200 Sosnowiec, Poland
| | - Diana Kitala
- Center for Burns Treatment, ul. Jana Pawła II 2, 41-100 Siemianowice Śląskie, Poland
| | - Karol Szyluk
- Department of Physiotherapy, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
- I Department of Orthopaedic and Trauma Surgery, Ortophaedics Department, District Hospital of Orthopaedics and Trauma Surgery, 41-940 Piekary Śląskie, Poland
| | - Paweł Niemiec
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences in Katowice, Medical University of Silesia in Katowice, 40-752 Katowice, Poland
| |
Collapse
|
2
|
Potential Role of CXCL13/CXCR5 Signaling in Immune Checkpoint Inhibitor Treatment in Cancer. Cancers (Basel) 2022; 14:cancers14020294. [PMID: 35053457 PMCID: PMC8774093 DOI: 10.3390/cancers14020294] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Immunotherapy is currently the backbone of new drug treatments for many cancer patients. CXC chemokine ligand 13 (CXCL13) is an important factor involved in recruiting immune cells that express CXC chemokine receptor type 5 (CXCR5) in the tumor microenvironment and serves as a key molecular determinant of tertiary lymphoid structure (TLS) formation. An increasing number of studies have identified the influence of CXCL13 on prognosis in patients with cancer, regardless of the use of immunotherapy treatment. However, no comprehensive reviews of the role of CXCL13 in cancer immunotherapy have been published to date. This review aims to provide an overview of the CXCL13/CXCR5 signaling axis to summarize its mechanisms of action in cancer cells and lymphocytes, in addition to effects on immunity and cancer pathobiology, and its potential as a biomarker for the response to cancer immunotherapy. Abstract Immune checkpoint inhibitors (ICIs), including antibodies that target programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), or cytotoxic T lymphocyte antigen 4 (CTLA4), represent some of the most important breakthroughs in new drug development for oncology therapy from the past decade. CXC chemokine ligand 13 (CXCL13) exclusively binds CXC chemokine receptor type 5 (CXCR5), which plays a critical role in immune cell recruitment and activation and the regulation of the adaptive immune response. CXCL13 is a key molecular determinant of the formation of tertiary lymphoid structures (TLSs), which are organized aggregates of T, B, and dendritic cells that participate in the adaptive antitumor immune response. CXCL13 may also serve as a prognostic and predictive factor, and the role played by CXCL13 in some ICI-responsive tumor types has gained intense interest. This review discusses how CXCL13/CXCR5 signaling modulates cancer and immune cells to promote lymphocyte infiltration, activation by tumor antigens, and differentiation to increase the antitumor immune response. We also summarize recent preclinical and clinical evidence regarding the ICI-therapeutic implications of targeting the CXCL13/CXCR5 axis and discuss the potential role of this signaling pathway in cancer immunotherapy.
Collapse
|
3
|
Abstract
Thermal injuries may cause significant damage to large areas of the skin. Extensive and deep burn wounds require specialized therapy. The optimal method in the strategy of treating extensive, full thickness burns (III°) is the use of autologous split thickness skin grafts STSG (Busuioc et al. Rom J Morphol Embryol 4:1061-1067, 2012; Kitala D, Kawecki M, Klama-Baryła A, Łabuś W, Kraut M, Glik J, Ryszkiel I, Kawecki MP, Nowak M. Allogeneic vs. Autologous Skin Grafts in the Therapy of Patients with Burn Injuries: A Restrospective, Open-label Clinical Study with Pair Matching. Adv Clin Exp Med. 2016 Sep-Oct;25(5):923-929.; Glik J, Kawecki M, Kitala D, Klama-Baryła A, Łabuś W, Grabowski M, Durdzińska A, Nowak M, Misiuga M, Kasperczyk A. A new option for definitive burn wound closure - pair matching type of retrospective case-control study of hand burns in the hospitalized patients group in the Dr Stanislaw Sakiel Center for Burn Treatment between 2009 and 2015. Int Wound J. 2017 Feb 21. https://doi.org/10.1111/iwj.12720 . [Epub ahead of print]; Prim et al. May 24Wound Repair Regen., 2017; Grossova et al. Mar 31Ann Burns Fire Disasters 30:5-8, 2017). The main limitation of that method is the inadequate amount of healthy, undamaged skin (donor sites), which could be harvested and used as a graft. Moreover, donor sites are an additional wounds that require analgesic therapy, leave scars during the healing process and they are highly susceptible to infection (1-6). It must be emphasized that in terms of the treatment of severe, deep and extensive burns, and there should be no doubt that the search for a biocompatible skin substitute that would be able to replace autologous STSG is an absolute priority. The above-mentioned necessitates the search for new treatment methods of severe burn wounds. Such methods could consider the preparation and application of bioengineered, natural skin substitutes. At present, as the clinical standard considered by the physicians may be use of available biological skin substitutes, e.g., human allogeneic skin, in vitro cultured skin cells, acellular dermal matrix ADM and revitalized ADMs, etc. (Busuioc et al. Rom J Morphol Embryol 4:1061-1067, 2012; Kitala D, Kawecki M, Klama-Baryła A, Łabuś W, Kraut M, Glik J, Ryszkiel I, Kawecki MP, Nowak M. Allogeneic vs. Autologous Skin Grafts in the Therapy of Patients with Burn Injuries: A Restrospective, Open-label Clinical Study with Pair Matching. Adv Clin Exp Med. 2016 Sep-Oct;25(5):923-929.; Glik J, Kawecki M, Kitala D, Klama-Baryła A, Łabuś W, Grabowski M, Durdzińska A, Nowak M, Misiuga M, Kasperczyk A. A new option for definitive burn wound closure - pair matching type of retrospective case-control study of hand burns in the hospitalised patients group in the Dr Stanislaw Sakiel Center for Burn Treatment between 2009 and 2015. Int Wound J. 2017 Feb 21. https://doi.org/10.1111/iwj.12720 . [Epub ahead of print]; Prim et al. May 24Wound Repair Regen., 2017; Grossova et al. Mar 31Ann Burns Fire Disasters 30:5-8, 2017; Łabuś et al. FebJ Biomed Mater Res B Appl Biomater 106:726-733, 2018).
Collapse
|
4
|
Dickhout A, Kaczor DM, Heinzmann ACA, Brouns SLN, Heemskerk JWM, van Zandvoort MAMJ, Koenen RR. Rapid Internalization and Nuclear Translocation of CCL5 and CXCL4 in Endothelial Cells. Int J Mol Sci 2021; 22:ijms22147332. [PMID: 34298951 PMCID: PMC8305033 DOI: 10.3390/ijms22147332] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/27/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
The chemokines CCL5 and CXCL4 are deposited by platelets onto endothelial cells, inducing monocyte arrest. Here, the fate of CCL5 and CXCL4 after endothelial deposition was investigated. Human umbilical vein endothelial cells (HUVECs) and EA.hy926 cells were incubated with CCL5 or CXCL4 for up to 120 min, and chemokine uptake was analyzed by microscopy and by ELISA. Intracellular calcium signaling was visualized upon chemokine treatment, and monocyte arrest was evaluated under laminar flow. Whereas CXCL4 remained partly on the cell surface, all of the CCL5 was internalized into endothelial cells. Endocytosis of CCL5 and CXCL4 was shown as a rapid and active process that primarily depended on dynamin, clathrin, and G protein-coupled receptors (GPCRs), but not on surface proteoglycans. Intracellular calcium signals were increased after chemokine treatment. Confocal microscopy and ELISA measurements in cell organelle fractions indicated that both chemokines accumulated in the nucleus. Internalization did not affect leukocyte arrest, as pretreatment of chemokines and subsequent washing did not alter monocyte adhesion to endothelial cells. Endothelial cells rapidly and actively internalize CCL5 and CXCL4 by clathrin and dynamin-dependent endocytosis, where the chemokines appear to be directed to the nucleus. These findings expand our knowledge of how chemokines attract leukocytes to sites of inflammation.
Collapse
Affiliation(s)
- Annemiek Dickhout
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.D.); (D.M.K.); (A.C.A.H.); (S.L.N.B.); (J.W.M.H.)
| | - Dawid M. Kaczor
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.D.); (D.M.K.); (A.C.A.H.); (S.L.N.B.); (J.W.M.H.)
| | - Alexandra C. A. Heinzmann
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.D.); (D.M.K.); (A.C.A.H.); (S.L.N.B.); (J.W.M.H.)
| | - Sanne L. N. Brouns
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.D.); (D.M.K.); (A.C.A.H.); (S.L.N.B.); (J.W.M.H.)
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.D.); (D.M.K.); (A.C.A.H.); (S.L.N.B.); (J.W.M.H.)
| | - Marc A. M. J. van Zandvoort
- Department of Genetics and Cell Biology, Molecular Cell Biology, School for Oncology and Developmental Biology, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Institute for Molecular Cardiovascular Research IMCAR, RWTH Aachen University, 52074 Aachen, Germany
| | - Rory R. Koenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.D.); (D.M.K.); (A.C.A.H.); (S.L.N.B.); (J.W.M.H.)
- Institute for Cardiovascular Prevention (IPEK), LMU Munich, 80336 Munich, Germany
- Correspondence:
| |
Collapse
|
5
|
Łabuś W, Kitala D, Klama-Baryła A, Szapski M, Smętek W, Kraut M, Poloczek R, Glik J, Pielesz A, Biniaś D, Sarna E, Grzybowska-Pietras J, Kucharzewski M. A new approach to the production of a biovital skin graft based on human acellular dermal matrix produced in-house, in vitro revitalized internally by human fibroblasts and keratinocytes on the surface. J Biomed Mater Res B Appl Biomater 2019; 108:1281-1294. [PMID: 31430055 DOI: 10.1002/jbm.b.34476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/19/2019] [Accepted: 08/07/2019] [Indexed: 12/11/2022]
Abstract
Patients with extensive and deep burns who do not have enough donor sites for autologous skin grafts require alternative treatment methods. Tissue engineering is a useful tool to solve this problem. The aim of this study was to find the optimal method for the production of a biovital skin substitute based on acellular dermal matrix (ADM) and in vitro cultured fibroblasts and keratinocytes. In this work, nine methods of ADM production were assessed. The proposed methods are based on the use of the following enzymes: Dispase II, collagenase I/ethylenediaminetetraacetic acid (EDTA), collagenase II/EDTA, and mechanical perforation using DermaRoller and mesh dermatome. The obtained ADMs were examined (both on the side of the basement membrane and on the "cut-off" side) by means of scanning electron microscopy, immunohistochemistry tests and strength tests. ADM was revitalized with human fibroblasts and keratinocytes. The ability of in-depth revitalization of cultured fibroblasts and their ability to secrete collagen IV was examined. The obtained results indicate that the optimal method of production of live skin substitutes is the colonization of autologous fibroblasts and keratinocytes on the scaffold obtained using two-step incubation method: Trypsin/EDTA and dispase II.
Collapse
Affiliation(s)
- Wojciech Łabuś
- Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Tyszkiewicz College, Bielsko-Biała, Poland
| | - Diana Kitala
- Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Silesian Medical School, Katowice, Poland
| | - Agnieszka Klama-Baryła
- Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Silesian Medical School, Katowice, Poland
| | - Michał Szapski
- Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland
| | - Wojciech Smętek
- Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland
| | - Małgorzata Kraut
- Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland
| | - Ryszard Poloczek
- Laboratory for Microscopic Examination "Diagno-Med", Siemianowice Slaskie, Poland
| | - Justyna Glik
- Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Department of Chronic Wounds Healing Management Chronic Wound Care Department, School of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Anna Pielesz
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Bielsko-Biala, Poland
| | - Dorota Biniaś
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Bielsko-Biala, Poland
| | - Ewa Sarna
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Bielsko-Biala, Poland
| | - Joanna Grzybowska-Pietras
- Faculty of Materials, Civil and Environmental Engineering, University of Bielsko-Biala, Bielsko-Biala, Poland
| | - Marek Kucharzewski
- Stanisław Sakiel Center for Burns Treatment, Siemianowice Śląskie, Poland.,Chair and Department of Descriptive and Topographic Anatomy, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Zabrze, Poland
| |
Collapse
|
6
|
Joo YH, Kim HK, Hak Choi I, Han HM, Lee KJ, Kim TH, Lee SH. Increased expression of interleukin 36 in chronic rhinosinusitis and its contribution to chemokine secretion and increased epithelial permeability. Cytokine 2019; 125:154798. [PMID: 31430658 DOI: 10.1016/j.cyto.2019.154798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/28/2019] [Accepted: 08/01/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND IL-36 family, a recently reported member of the IL-1 cytokine family, plays an essential role in nonspecific innate immune response to infection. This study aims at investigating the expression of IL-36 family members (α, β, and γ) in normal and inflammatory sinus mucosa of patients with chronic rhinosinusitis (CRS), their effects on chemokine secretion and on the barrier function of epithelial and endothelial cells, and the effect of Toll-like receptors on the expression of IL-36 in epithelial cells. MATERIAL AND METHODS The expression of IL-36 family in normal and inflammatory sinus mucosa, the production of chemokines or the expression levels of IL-36 family in epithelial cells treated with IL-36 family members or stimulated with TLR3, TLR4, TLR5, or TLR7/8 agonists were measured with real time PCR, ELISA, immunohistochemistry, or Western blot. The epithelial and endothelial permeability, and transendothelial leukocyte migration were investigated using cultured epithelial and endothelial cells. RESULTS IL-36α, IL-36β, and IL-36γ were localized in epithelial cells of sinonasal mucosa. Their levels increased in inflammatory mucosa of CRS patients and are up-regulated by TLR3, TLR4, or TLR5 agonists. IL-36α, or IL-36γ induced CXCL1, CXCL2, and CXCL3 production. Epithelial and endothelial permeability, transendothelial leukocyte migration were increased in cells treated with IL-36α, IL-36β, or IL-36γ. CONCLUSIONS These results suggest that IL-36α, IL-36β, and IL-36γ localized in superficial epithelium may act as a responder to microbial and nonmicrobial elements through TLR and subsequently produce CXC chemokines, playing an interplay between innate and adaptive immune response.
Collapse
Affiliation(s)
- Young Ho Joo
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Ha Kyun Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - In Hak Choi
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Hae Min Han
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Ki Jeong Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Tae Hoon Kim
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea
| | - Sang Hag Lee
- Department of Otorhinolaryngology-Head & Neck Surgery, College of Medicine, Korea University, Seoul, South Korea.
| |
Collapse
|
7
|
Xu L, Liang Z, Li S, Ma J. Signaling via the CXCR5/ERK pathway is mediated by CXCL13 in mice with breast cancer. Oncol Lett 2018; 15:9293-9298. [PMID: 29844827 DOI: 10.3892/ol.2018.8510] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is the most common cause of cancer-associated mortality and the most frequently diagnosed type of cancer in women worldwide. It has been revealed that the chemokine C-X-C motif chemokine ligand 13 (CXCL13) serves a pivotal role in breast cancer growth and is associated with lymph node metastasis. However, to the best of our knowledge, the mechanism by which CXCL13 mediates breast cancer growth remains uncharacterized. Female BALB/c mice were used in this study. Tumor volume was calculated and changes of gross tumor morphology were observed by hematoxylin and eosin staining. The expression of CXCL13, C-X-C motif chemokine receptor 5 (CXCR5) and extracellular signaling-related kinase (ERK) mRNA and protein expression were detected by reverse transcriptase quantitative-polymerase chain reaction and western blot analysis. Simultaneously, the production of cytokines [interleukin-1β (IL-1β), tumor necrosis factor (TNF) and tumor growth factor β1 (TGF-β1)] was detected by an ELISA. The CXCL13 inhibitor reduced tumor volume and growth, and reduced the mRNA and protein expression levels of key members of the CXCR5/ERK signaling pathway: CXCL13, CXCR5 and ERK. Furthermore, the detectable concentration of the cytokines IL-1β and TNF decreased following CXCL13 inhibition, whereas the concentration of TGF-β1 was increased. The attenuation of tumor growth resulting from CXCL13 inhibition may be associated with the CXCR5/ERK signaling pathway. This study provides a theoretical basis for treating breast cancer through CXCL13 inhibition in clinical trials.
Collapse
Affiliation(s)
- Licheng Xu
- Department of Breast Surgery, Yantaishan Hospital, Yantai, Shandong 264002, P.R. China
| | - Zhi Liang
- Department of Breast Surgery, Yantaishan Hospital, Yantai, Shandong 264002, P.R. China
| | - Shuyan Li
- Department of Breast Surgery, Yantaishan Hospital, Yantai, Shandong 264002, P.R. China
| | - Jianjun Ma
- Department of Medical Oncology, The People's Liberation Army 107th Hospital, Yantai, Shandong 264002, P.R. China
| |
Collapse
|
8
|
Kawecki M, Łabuś W, Klama-Baryla A, Kitala D, Kraut M, Glik J, Misiuga M, Nowak M, Bielecki T, Kasperczyk A. A review of decellurization methods caused by an urgent need for quality control of cell-free extracellular matrix' scaffolds and their role in regenerative medicine. J Biomed Mater Res B Appl Biomater 2017; 106:909-923. [DOI: 10.1002/jbm.b.33865] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/12/2016] [Accepted: 01/26/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Marek Kawecki
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
- University of Technology and Humanities in Bielsko-Biała; Department of Health Science in Bielsko-Biała; Poland
| | - Wojciech Łabuś
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | | | - Diana Kitala
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | - Malgorzata Kraut
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | - Justyna Glik
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
- The Medical University of Silesia in Katowice; Unit for Chronic Wound Treatment Organization, Nursery Division; School of Healthcare in Zabrze Poland
| | - Marcelina Misiuga
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | - Mariusz Nowak
- Dr Stanislaw Sakiel Centre for Burns Treatment in Siemianowice Slaskie; Poland
| | - Tomasz Bielecki
- Saint Barbara's Clinical Hospital number 5 in Sosnowiec; Clinical Department of Orthopaedics, Trauma; Oncologic and Reconstructive Surgery Poland
| | - Aleksandra Kasperczyk
- Medical University of Silesia in Katowice; Department of Biochemistry, School of Medicine with the Division of Dentistry in Zabrze
| |
Collapse
|