1
|
Mathur D, Thakur M, Díaz SA, Susumu K, Stewart MH, Oh E, Walper SA, Medintz IL. Hybrid Nucleic Acid-Quantum Dot Assemblies as Multiplexed Reporter Platforms for Cell-Free Transcription Translation-Based Biosensors. ACS Synth Biol 2022; 11:4089-4102. [PMID: 36441919 PMCID: PMC9829448 DOI: 10.1021/acssynbio.2c00394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell-free synthetic biology has emerged as a valuable tool for the development of rapid, portable biosensors that can be readily transported in the freeze-dried form to the point of need eliminating cold chain requirements. One of the challenges associated with cell-free sensors is the ability to simultaneously detect multiple analytes within a single reaction due to the availability of a limited set of fluorescent and colorimetric reporters. To potentially provide multiplexing capabilities to cell-free biosensors, we designed a modular semiconductor quantum dot (QD)-based reporter platform that is plugged in downstream of the transcription-translation functionality in the cell-free reaction and which converts enzymatic activity in the reaction into distinct optical signals. We demonstrate proof of concept by converting restriction enzyme activity, utilized as our prototypical sensing output, into optical changes across several distinct spectral output channels that all use a common excitation wavelength. These hybrid Förster resonance energy transfer (FRET)-based QD peptide PNA-DNA-Dye reporters (QD-PDDs) are completely self-assembled and consist of differentially emissive QD donors paired to a dye-acceptor displayed on a unique DNA encoding a given enzyme's cleavage site. Three QD-based PDDs, independently activated by the enzymes BamHI, EcoRI, and NcoI, were prototyped in mixed enzyme assays where all three demonstrated the ability to convert enzymatic activity into fluorescent output. Simultaneous monitoring of each of the three paired QD-donor dye-acceptor spectral channels in cell-free biosensing reactions supplemented with added linear genes encoding each enzyme confirmed robust multiplexing capabilities for at least two enzymes when co-expressed. The modular QD-PDDs are easily adapted to respond to other restriction enzymes or even proteases if desired.
Collapse
Affiliation(s)
| | | | - Sebastián A. Díaz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington 20375, United States
| | - Kimihiro Susumu
- Jacobs Corporation, Hanover, Maryland 21076, United States; Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington 20375, United States
| | - Michael H. Stewart
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington 20375, United States
| | - Eunkeu Oh
- Optical Sciences Division Code 5600, U.S. Naval Research Laboratory, Washington 20375, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering Code 6900, U.S. Naval Research Laboratory, Washington 20375, United States
| |
Collapse
|
2
|
Green CM, Mathur D, Susumu K, Oh E, Medintz IL, Díaz SA. Polyhistidine-Tag-Enabled Conjugation of Quantum Dots and Enzymes to DNA Nanostructures. Methods Mol Biol 2022; 2525:61-91. [PMID: 35836061 DOI: 10.1007/978-1-0716-2473-9_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DNA nanostructures self-assemble into almost any arbitrary architecture, and when combined with their capability to precisely position and orient dyes, nanoparticles, and biological moieties, the technology reaches its potential. We present a simple yet multifaceted conjugation strategy based on metal coordination by a multi-histidine peptide tag (Histag). The versatility of the Histag as a means to conjugate to DNA nanostructures is shown by using Histags to capture semiconductor quantum dots (QDs) with numerical and positional precision onto a DNA origami breadboard. Additionally, Histag-expressing enzymes, such as the bioluminescent luciferase, can also be captured to the DNA origami breadboard with similar precision. DNA nanostructure conjugation of the QDs or luciferase is confirmed through imaging and/or energy transfer to organic dyes integrated into the DNA nanostructure.
Collapse
Affiliation(s)
- Christopher M Green
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC, USA
- National Research Council, Washington, DC, USA
| | - Divita Mathur
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC, USA
- College of Science, George Mason University, Fairfax, VA, USA
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC, USA
- Jacobs Corporation, Hanover, MD, USA
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, DC, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory Code 6900, Washington, DC, USA.
| |
Collapse
|
3
|
Ellis GA, Díaz SA, Medintz IL. Enhancing enzymatic performance with nanoparticle immobilization: improved analytical and control capability for synthetic biochemistry. Curr Opin Biotechnol 2021; 71:77-90. [PMID: 34293630 DOI: 10.1016/j.copbio.2021.06.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 05/26/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022]
Abstract
Enzymes are incredibly potent catalysts with the potential for rapid turnover rates and exquisite specificity, leading to their desired use in multiple biotechnological processes. Yet using these natural catalysts outside of their evolved role can necessitate significant engineering. Immobilization onto microscale (or larger) scaffolds can impart industrially-desired properties but often sacrifices enzymatic activity for long-term stability; in contrast, nanoparticle (NP) conjugation of enzymes can preserve or even enhance their activity. Here, we focus on recent examples of enzyme immobilization onto NPs as a method to improve their industrial applicability. We highlight the analytical methods that are used to both characterize such enhancement along with provide insight into the phenomena that give rise to it. Finally, a short perspective addresses how to adapt lessons learned at the bench about this phenomena to larger-scale biotechnological applications.
Collapse
Affiliation(s)
- Gregory A Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, USA
| | - Sebastían A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C., 20375, USA.
| |
Collapse
|
4
|
Hallaj T, Amjadi M, Qiu X, Susumu K, Medintz IL, Hildebrandt N. Terbium-to-quantum dot Förster resonance energy transfer for homogeneous and sensitive detection of histone methyltransferase activity. NANOSCALE 2020; 12:13719-13730. [PMID: 32573632 DOI: 10.1039/d0nr03383a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of rapid, simple, and versatile biosensors for monitoring the activity of histone modifying enzymes (HMEs) is needed for the improvement of diagnostic assays, screening of HME inhibitors, and a better understanding of HME kinetics in different environments. Nanoparticles can play an important role in this regard by improving or complementing currently available enzyme detection technologies. Here, we present the development and application of a homogeneous methyltransferase (SET7/9) assay based on time-gated Förster resonance energy transfer (TG-FRET) between terbium complexes (Tb) and luminescent semiconductor quantum dots (QDs). Specific binding of a Tb-antibody conjugate to a SET7/9-methylated Lys4 on a histone H3(1-21) peptide substrate attached to the QD surface resulted in efficient FRET and provided the mechanism for monitoring the SET7/9 activity. Two common peptide-QD attachment strategies (biotin-streptavidin and polyhistidine-mediated self-assembly), two different QD colors (625 and 705 nm), and enzyme sensing with post- or pre-assembled QD-peptide conjugates demonstrated the broad applicability of this assay design. Limits of detection in the low picomolar concentration range, high selectivity tested against non-specific antibodies, enzymes, and co-factors, determination of the inhibition constants of the SET7/9 inhibitors SAH and (R)-PFI-2, and analysis of the co-factor (SAM) concentration-dependent enzyme kinetics of SET7/9 which followed the Michaelis-Menten model highlighted the excellent performance of this TG-FRET HME activity assay.
Collapse
Affiliation(s)
- Tooba Hallaj
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran. and Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| | - Xue Qiu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France and School of Medicine and Pharmacy, Ocean University of China. 5, Yushan Road, 266003 Qingdao, Shandong, China
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA and KeyW Corporation, Hanover, Maryland 21076, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, USA
| | - Niko Hildebrandt
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France and nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France.
| |
Collapse
|
5
|
Breger JC, Susumu K, Lasarte-Aragonés G, Díaz SA, Brask J, Medintz IL. Quantum Dot Lipase Biosensor Utilizing a Custom-Synthesized Peptidyl-Ester Substrate. ACS Sens 2020; 5:1295-1304. [PMID: 32096987 DOI: 10.1021/acssensors.9b02291] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lipases are an important class of lipid hydrolyzing enzymes that play significant roles in many aspects of cell biology and digestion; they also have large roles in commercial food and biofuel preparation and are being targeted for pharmaceutical development. Given these, and many other biotechnological roles, sensitive and specific biosensors capable of monitoring lipase activity in a quantitative manner are critical. Here, we describe a Förster resonance energy transfer (FRET)-based biosensor that originates from a custom-synthesized ester substrate displaying a peptide at one end and a dye acceptor at the other. These substrates were ratiometrically self-assembled to luminescent semiconductor quantum dot (QD) donors by metal affinity coordination using the appended peptide's terminal hexahistidine motif to give rise to the full biosensing construct. This resulted in a high rate of FRET between the QD donor and the proximal substrate's dye acceptor. The lipase hydrolyzed the intervening target ester bond in the peptide substrate which, in turn, displaced the dye acceptor containing component and altered the rate of FRET in a concentration-dependent manner. Specifics of the substrate's stepwise synthesis are described along with the sensors assembly, characterization, and application in a quantitative proof-of-concept demonstration assay that is based on an integrated Michaelis-Menten kinetic approach. The utility of this unique nanoparticle-based architecture within a sensor configuration is then discussed.
Collapse
Affiliation(s)
- Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, District of Columbia 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, U.S. Naval Research Laboratory, Code 5600, Washington, District of Columbia 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Guillermo Lasarte-Aragonés
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, District of Columbia 20375, United States
- Department of Bioengineering, George Mason University, Fairfax, Virginia 22030, United States
| | - Sebastián A. Díaz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, District of Columbia 20375, United States
| | - Jesper Brask
- Novozymes A/S, Biologiens Vej 2, 2800 Kgs. Lyngby, Denmark
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Code 6900, Washington, District of Columbia 20375, United States
| |
Collapse
|
6
|
Bioluminescence-Based Energy Transfer Using Semiconductor Quantum Dots as Acceptors. SENSORS 2020; 20:s20102909. [PMID: 32455561 PMCID: PMC7284562 DOI: 10.3390/s20102909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/17/2022]
Abstract
Bioluminescence resonance energy transfer (BRET) is the non-radiative transfer of energy from a bioluminescent protein donor to a fluorophore acceptor. It shares all the formalism of Förster resonance energy transfer (FRET) but differs in one key aspect: that the excited donor here is produced by biochemical means and not by an external illumination. Often the choice of BRET source is the bioluminescent protein Renilla luciferase, which catalyzes the oxidation of a substrate, typically coelenterazine, producing an oxidized product in its electronic excited state that, in turn, couples with a proximal fluorophore resulting in a fluorescence emission from the acceptor. The acceptors pertinent to this discussion are semiconductor quantum dots (QDs), which offer some unrivalled photophysical properties. Amongst other advantages, the QD's large Stokes shift is particularly advantageous as it allows easy and accurate deconstruction of acceptor signal, which is difficult to attain using organic dyes or fluorescent proteins. QD-BRET systems are gaining popularity in non-invasive bioimaging and as probes for biosensing as they don't require external optical illumination, which dramatically improves the signal-to-noise ratio by avoiding background auto-fluorescence. Despite the additional advantages such systems offer, there are challenges lying ahead that need to be addressed before they are utilized for translational types of research.
Collapse
|
7
|
Maksoudian C, Soenen SJ, Susumu K, Oh E, Medintz IL, Manshian BB. A Multiparametric Evaluation of Quantum Dot Size and Surface-Grafted Peptide Density on Cellular Uptake and Cytotoxicity. Bioconjug Chem 2020; 31:1077-1087. [PMID: 32208650 DOI: 10.1021/acs.bioconjchem.0c00078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Despite the progress in nanotechnology for biomedical applications, great efforts are still being employed in optimizing nanoparticle (NP) design parameters to improve functionality and minimize bionanotoxicity. In this study, we developed CdSe/CdS/ZnS core/shell/shell quantum dots (QDs) that are compact ligand-coated and surface-functionalized with an HIV-1-derived TAT cell-penetrating peptide (CPP) analog to improve both biocompatibility and cellular uptake. Multiparametric studies were performed in different mammalian and murine cell lines to compare the effects of varying QD size and number of surface CPPs on cellular uptake, viability, generation of reactive oxygen species, mitochondrial health, cell area, and autophagy. Our results showed that the number of cell-associated NPs and their respective toxicity are higher for the larger QDs. Meanwhile, increasing the number of surface CPPs also enhanced cellular uptake and induced cytotoxicity through the generation of mitoROS and autophagy. Thus, here we report the optimal size and surface CPP combinations for improved QD cellular uptake.
Collapse
Affiliation(s)
- Christy Maksoudian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J Soenen
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | | | | | | | - Bella B Manshian
- NanoHealth and Optical Imaging Group, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
8
|
Klein WP, Thomsen RP, Turner KB, Walper SA, Vranish J, Kjems J, Ancona MG, Medintz IL. Enhanced Catalysis from Multienzyme Cascades Assembled on a DNA Origami Triangle. ACS NANO 2019; 13:13677-13689. [PMID: 31751123 DOI: 10.1021/acsnano.9b05746] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Developing reliable methods of constructing cell-free multienzyme biocatalytic systems is a milestone goal of synthetic biology. It would enable overcoming the limitations of current cell-based systems, which suffer from the presence of competing pathways, toxicity, and inefficient access to extracellular reactants and removal of products. DNA nanostructures have been suggested as ideal scaffolds for assembling sequential enzymatic cascades in close enough proximity to potentially allow for exploiting of channeling effects; however, initial demonstrations have provided somewhat contradictory results toward confirming this phenomenon. In this work, a three-enzyme sequential cascade was realized by site-specifically immobilizing DNA-conjugated amylase, maltase, and glucokinase on a self-assembled DNA origami triangle. The kinetics of seven different enzyme configurations were evaluated experimentally and compared to simulations of optimized activity. A 30-fold increase in the pathway's kinetic activity was observed for enzymes assembled to the DNA. Detailed kinetic analysis suggests that this catalytic enhancement originated from increased enzyme stability and a localized DNA surface affinity or hydration layer effect and not from a directed enzyme-to-enzyme channeling mechanism. Nevertheless, the approach used to construct this pathway still shows promise toward improving other more elaborate multienzymatic cascades and could potentially allow for the custom synthesis of complex (bio)molecules that cannot be realized with conventional organic chemistry approaches.
Collapse
Affiliation(s)
- William P Klein
- National Research Council , Washington , D.C. 20001 , United States
| | - Rasmus P Thomsen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics , Aarhus University , 8000 Aarhus , Denmark
| | | | - Scott A Walper
- National Research Council , Washington , D.C. 20001 , United States
| | - James Vranish
- Ave Maria University , Ave Maria , Florida 34142 , United States
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center and Department of Molecular Biology and Genetics , Aarhus University , 8000 Aarhus , Denmark
| | | | - Igor L Medintz
- National Research Council , Washington , D.C. 20001 , United States
| |
Collapse
|
9
|
Ellis GA, Klein WP, Lasarte-Aragonés G, Thakur M, Walper SA, Medintz IL. Artificial Multienzyme Scaffolds: Pursuing in Vitro Substrate Channeling with an Overview of Current Progress. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02413] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gregory A. Ellis
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - William P. Klein
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20001, United States
| | - Guillermo Lasarte-Aragonés
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
10
|
Breger JC, Oh E, Susumu K, Klein WP, Walper SA, Ancona MG, Medintz IL. Nanoparticle Size Influences Localized Enzymatic Enhancement—A Case Study with Phosphotriesterase. Bioconjug Chem 2019; 30:2060-2074. [DOI: 10.1021/acs.bioconjchem.9b00362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Joyce C. Breger
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Eunkeu Oh
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5600, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- KeyW Corporation, Hanover, Maryland 21076, United States
| | - William P. Klein
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
- National Research Council, Washington, D.C. 20001, United States
| | - Scott A. Walper
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Mario G. Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| |
Collapse
|
11
|
Bui H, Brown CW, Buckhout-White S, Díaz SA, Stewart MH, Susumu K, Oh E, Ancona MG, Goldman ER, Medintz IL. Transducing Protease Activity into DNA Output for Developing Smart Bionanosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805384. [PMID: 30803148 DOI: 10.1002/smll.201805384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/28/2019] [Indexed: 06/09/2023]
Abstract
DNA can process information through sequence-based reorganization but cannot typically receive input information from most biological processes and translate that into DNA compatible language. Coupling DNA to a substrate responsive to biological events can address this limitation. A two-component sensor incorporating a chimeric peptide-DNA substrate is evaluated here as a protease-to-DNA signal convertor which transduces protease activity through DNA gates that discriminate between different input proteases. Acceptor dye-labeled peptide-DNAs are assembled onto semiconductor quantum dot (QD) donors as the input gate. Addition of trypsin or chymotrypsin cleaves their cognate peptide sequence altering the efficiency of Förster resonance energy transfer (FRET) with the QD and frees a DNA output which interacts with a tetrahedral output gate. Downstream output gate rearrangement results in FRET sensitization of a new acceptor dye. Following characterization of component assembly and optimization of individual steps, sensor ability to discriminate between the two proteases is confirmed along with effects from joint interactions where potential for cross-talk is highest. Processing multiple bits of information for a sensing outcome provides more confidence than relying on a single change especially for the discrimination between different targets. Coupling other substrates to DNA that respond similarly could help target other types of enzymes.
Collapse
Affiliation(s)
- Hieu Bui
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- National Research Council, 500 Fifth Street NW, Keck 576, Washington, DC, 20001, USA
| | - Carl W Brown
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- College of Science, George Mason University, Fairfax, VA, 22030, USA
| | - Susan Buckhout-White
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Michael H Stewart
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Kimihiro Susumu
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- KeyW Corporation, Hanover, MD, 21076, USA
| | - Eunkeu Oh
- Optical Sciences Division, Code 5611, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
- KeyW Corporation, Hanover, MD, 21076, USA
| | - Mario G Ancona
- Electronic Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Ellen R Goldman
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, DC, 20375, USA
| |
Collapse
|
12
|
Hondred JA, Breger JC, Garland NT, Oh E, Susumu K, Walper SA, Medintz IL, Claussen JC. Enhanced enzymatic activity from phosphotriesterase trimer gold nanoparticle bioconjugates for pesticide detection. Analyst 2018; 142:3261-3271. [PMID: 28765846 DOI: 10.1039/c6an02575g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The rapid detection of organophosphates (OPs), a class of strong neurotoxins, is critically important for monitoring acute insecticide exposure and potential chemical warfare agent use. Herein, we improve the enzymatic activity of a phosphotriesterase trimer (PTE3), an enzyme that selectively recognizes OPs directly, by conjugation with distinctly sized (i.e., 5, 10, and 20 nm diameter) gold nanoparticles (AuNPs). The number of enzymes immobilized on the AuNP was controlled by conjugating increasing molar ratios of PTE3 onto the AuNP surface via metal affinity coordination. This occurs between the PTE3-His6 termini and the AuNP-displayed Ni2+-nitrilotriacetic acid end groups and was confirmed with gel electrophoresis. The enzymatic efficiency of the resultant PTE3-AuNP bioconjugates was analyzed via enzyme progress curves acquired from two distinct assay formats that compared free unbound PTE3 with the following PTE3-AuNP bioconjugates: (1) fixed concentration of AuNPs while increasing the bioconjugate molar ratio of PTE3 displayed around the AuNP and (2) fixed concentration of PTE3 while increasing the bioconjugate molar ratio of PTE3-AuNP by decreasing the AuNP concentration. Both assay formats monitored the absorbance of p-nitrophenol that was produced as PTE3 hydrolyzed the substrate paraoxon, a commercial insecticide and OP nerve agent simulant. Results demonstrate a general equivalent trend between the two formats. For all experiments, a maximum enzymatic velocity (Vmax) increased by 17-fold over free enzyme for the lowest PTE3-AuNP ratio and the largest AuNP (i.e., ratio of 1 : 1, 20 nm dia. AuNP). This work provides a route to improve enzymatic OP detection strategies with enzyme-NP bioconjugates.
Collapse
Affiliation(s)
- John A Hondred
- Department of Mechanical Engineering, Iowa State University, United States Ames, IA 50011, USA.
| | | | | | | | | | | | | | | |
Collapse
|