1
|
Song X, Chen Z, Sun W, Yang H, Guo L, Zhao Y, Li Y, Ren Z, Shi J, Liu C, Ma P, Huang X, Ji Q, Sun B. CRISPR-AsCas12f1 couples out-of-protospacer DNA unwinding with exonuclease activity in the sequential target cleavage. Nucleic Acids Res 2024; 52:14030-14042. [PMID: 39530229 DOI: 10.1093/nar/gkae989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Type V-F CRISPR-Cas12f is a group of hypercompact RNA-guided nucleases that present a versatile in vivo delivery platform for gene therapy. Upon target recognition, Acidibacillus sulfuroxidans Cas12f (AsCas12f1) distinctively engenders three DNA break sites, two of which are located outside the protospacer. Combining ensemble and single-molecule approaches, we elucidate the molecular details underlying AsCas12f1-mediated DNA cleavages. We find that following the protospacer DNA unwinding and non-target strand (NTS) DNA nicking, AsCas12f1 surprisingly carries out bidirectional exonucleolytic cleavage from the nick. Subsequently, DNA unwinding is extended to the out-of-protospacer region, and AsCas12f1 gradually digests the unwound DNA beyond the protospacer. Eventually, the single endonucleolytic target-strand DNA cleavage at 3 nt downstream of the protospacer readily dissociates the ternary AsCas12f1-sgRNA-DNA complex from the protospacer adjacent motif-distal end, leaving a staggered double-strand DNA break. The coupling between the unwinding and cleavage of both protospacer and out-of-protospacer DNA is promoted by Mg2+. Kinetic analysis on the engineered AsCas12f1-v5.1 variant identifies the only accelerated step of the protospacer NTS DNA trimming within the sequential DNA cleavage. Our findings provide a dynamic view of AsCas12f1 catalyzing DNA unwinding-coupled nucleolytic cleavage and help with practical improvements of Cas12f-based genome editing tools.
Collapse
Affiliation(s)
- Xiaoxuan Song
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ziting Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, NHC Key Laboratory of Hearing Medicine, Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, China
| | - Wenjun Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Hao Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lijuan Guo
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yilin Zhao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanan Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhiyun Ren
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Shi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peixiang Ma
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | | | - Quanjiang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
2
|
Guo L, Bao Y, Zhao Y, Ren Z, Bi L, Zhang X, Liu C, Hou X, Wang MD, Sun B. Joint Efforts of Replicative Helicase and SSB Ensure Inherent Replicative Tolerance of G-Quadruplex. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307696. [PMID: 38126671 PMCID: PMC10916570 DOI: 10.1002/advs.202307696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/28/2023] [Indexed: 12/23/2023]
Abstract
G-quadruplex (G4) is a four-stranded noncanonical DNA structure that has long been recognized as a potential hindrance to DNA replication. However, how replisomes effectively deal with G4s to avoid replication failure is still obscure. Here, using single-molecule and ensemble approaches, the consequence of the collision between bacteriophage T7 replisome and an intramolecular G4 located on either the leading or lagging strand is examined. It is found that the adjacent fork junctions induced by G4 formation incur the binding of T7 DNA polymerase (DNAP). In addition to G4, these inactive DNAPs present insuperable obstacles, impeding the progression of DNA synthesis. Nevertheless, T7 helicase can dismantle them and resolve lagging-strand G4s, paving the way for the advancement of the replication fork. Moreover, with the assistance of the single-stranded DNA binding protein (SSB) gp2.5, T7 helicase is also capable of maintaining a leading-strand G4 structure in an unfolded state, allowing for a fraction of T7 DNAPs to synthesize through without collapse. These findings broaden the functional repertoire of a replicative helicase and underscore the inherent G4 tolerance of a replisome.
Collapse
Affiliation(s)
- Lijuan Guo
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yanling Bao
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Yilin Zhao
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Zhiyun Ren
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Lulu Bi
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Xia Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai201210China
| | - Xi‐Miao Hou
- College of Life SciencesNorthwest A&F UniversityYanglingShaanxi712100China
| | - Michelle D. Wang
- Department of Physics, Laboratory of Atomic and Solid State PhysicsCornell UniversityIthacaNY14853USA
- Howard Hughes Medical InstituteCornell UniversityIthacaNY14853USA
| | - Bo Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghai201210China
| |
Collapse
|
3
|
Gao X, Inman JT, Wang MD. Angular Optical Trapping to Directly Measure DNA Torsional Mechanics. Methods Mol Biol 2022; 2478:37-73. [PMID: 36063318 DOI: 10.1007/978-1-0716-2229-2_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Angular optical trapping (AOT) is a powerful technique that permits direct angular manipulation of a trapped particle with simultaneous measurement of torque and rotation, while also retaining the capabilities of position and force detection. This technique provides unique approaches to investigate the torsional properties of nucleic acids and DNA-protein complexes, as well as impacts of torsional stress on fundamental biological processes, such as transcription and replication. Here we describe the principle, construction, and calibration of the AOT in detail and provide a guide to the performance of single-molecule torque measurements on DNA molecules. We include the constant-force method and, notably, a new constant-extension method that enables measurement of the twist persistence length of both extended DNA, under an extremely low force, and plectonemic DNA. This chapter can assist in the implementation and application of this technique for general researchers in the single-molecule field.
Collapse
Affiliation(s)
- Xiang Gao
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Laboratory of Atomic and Solid State Physics (LASSP), Department of Physics, Cornell University, Ithaca, NY, USA
| | - James T Inman
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA
- Laboratory of Atomic and Solid State Physics (LASSP), Department of Physics, Cornell University, Ithaca, NY, USA
| | - Michelle D Wang
- Howard Hughes Medical Institute, Cornell University, Ithaca, NY, USA.
- Laboratory of Atomic and Solid State Physics (LASSP), Department of Physics, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
Zhang Q, Chen Z, Wang F, Zhang S, Chen H, Gu X, Wen F, Jin J, Zhang X, Huang X, Shen B, Sun B. Efficient DNA interrogation of SpCas9 governed by its electrostatic interaction with DNA beyond the PAM and protospacer. Nucleic Acids Res 2021; 49:12433-12444. [PMID: 34850124 PMCID: PMC8643646 DOI: 10.1093/nar/gkab1139] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/26/2022] Open
Abstract
Streptococcus pyogenes Cas9 (SpCas9), a programmable RNA-guided DNA endonuclease, has been widely repurposed for biological and medical applications. Critical interactions between SpCas9 and DNA confer the high specificity of the enzyme in genome engineering. Here, we unveil that an essential SpCas9–DNA interaction located beyond the protospacer adjacent motif (PAM) is realized through electrostatic forces between four positively charged lysines among SpCas9 residues 1151–1156 and the negatively charged DNA backbone. Modulating this interaction by substituting lysines with amino acids that have distinct charges revealed a strong dependence of DNA target binding and cleavage activities of SpCas9 on the charge. Moreover, the SpCas9 mutants show markedly distinguishable DNA interaction sites beyond the PAM compared with wild-type SpCas9. Functionally, this interaction governs DNA sampling and participates in protospacer DNA unwinding during DNA interrogation. Overall, a mechanistic and functional understanding of this vital interaction explains how SpCas9 carries out efficient DNA interrogation.
Collapse
Affiliation(s)
- Qian Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziting Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fangzhu Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Gusu School, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Siqi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Chen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Gusu School, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Xueying Gu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Gusu School, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Fengcai Wen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiachuan Jin
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Gusu School, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Xia Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Gusu School, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,Gene Editing Center, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Determining translocation orientations of nucleic acid helicases. Methods 2021; 204:160-171. [PMID: 34758393 PMCID: PMC9076756 DOI: 10.1016/j.ymeth.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 11/20/2022] Open
Abstract
Helicase enzymes translocate along an RNA or DNA template with a defined polarity to unwind, separate, or remodel duplex strands for a variety of genome maintenance processes. Helicase mutations are commonly associated with a variety of diseases including aging, cancer, and neurodegeneration. Biochemical characterization of these enzymes has provided a wealth of information on the kinetics of unwinding and substrate preferences, and several high-resolution structures of helicases alone and bound to oligonucleotides have been solved. Together, they provide mechanistic insights into the structural translocation and unwinding orientations of helicases. However, these insights rely on structural inferences derived from static snapshots. Instead, continued efforts should be made to combine structure and kinetics to better define active translocation orientations of helicases. This review explores many of the biochemical and biophysical methods utilized to map helicase binding orientation to DNA or RNA substrates and includes several time-dependent methods to unequivocally map the active translocation orientation of these enzymes to better define the active leading and trailing faces.
Collapse
|
6
|
Kilic Z, Sgouralis I, Pressé S. Residence time analysis of RNA polymerase transcription dynamics: A Bayesian sticky HMM approach. Biophys J 2021; 120:1665-1679. [PMID: 33705761 DOI: 10.1016/j.bpj.2021.02.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023] Open
Abstract
The time spent by a single RNA polymerase (RNAP) at specific locations along the DNA, termed "residence time," reports on the initiation, elongation, and termination stages of transcription. At the single-molecule level, this information can be obtained from dual ultrastable optical trapping experiments, revealing a transcriptional elongation of RNAP interspersed with residence times of variable duration. Successfully discriminating between long and short residence times was used by previous approaches to learn about RNAP's transcription elongation dynamics. Here, we propose an approach based on the Bayesian sticky hidden Markov model that treats all residence times for an Escherichia coli RNAP on an equal footing without a priori discriminating between long and short residence times. Furthermore, our method has two additional advantages: we provide full distributions around key point statistics and directly treat the sequence dependence of RNAP's elongation rate. By applying our approach to experimental data, we find assigned relative probabilities on long versus short residence times, force-dependent average residence time transcription elongation dynamics, ∼10% drop in the average backtracking durations in the presence of GreB, and ∼20% drop in the average residence time as a function of applied force in the presence of RNaseA.
Collapse
Affiliation(s)
- Zeliha Kilic
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona
| | - Ioannis Sgouralis
- Department of Mathematics, University of Tennessee, Knoxville, Tennessee
| | - Steve Pressé
- Center for Biological Physics, Department of Physics and School of Molecular Sciences, Arizona State University, Tempe, Arizona. spresse@%20asu.edu
| |
Collapse
|
7
|
Zhang S, Zhang Q, Hou X, Guo L, Wang F, Bi L, Zhang X, Li H, Wen F, Xi X, Huang X, Shen B, Sun B. Dynamics of Staphylococcus aureus Cas9 in DNA target Association and Dissociation. EMBO Rep 2020; 21:e50184. [PMID: 32790142 PMCID: PMC7534634 DOI: 10.15252/embr.202050184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 07/11/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus aureus Cas9 (SaCas9) is an RNA-guided endonuclease that targets complementary DNA adjacent to a protospacer adjacent motif (PAM) for cleavage. Its small size facilitates in vivo delivery for genome editing in various organisms. Herein, using single-molecule and ensemble approaches, we systemically study the mechanism of SaCas9 underlying its interplay with DNA. We find that the DNA binding and cleavage of SaCas9 require complementarities of 6- and 18-bp of PAM-proximal DNA with guide RNA, respectively. These activities are mediated by two steady interactions among the ternary complex, one of which is located approximately 6 bp from the PAM and beyond the apparent footprint of SaCas9 on DNA. Notably, the other interaction within the protospacer is significantly strong and thus poses DNA-bound SaCas9 a persistent block to DNA-tracking motors. Intriguingly, after cleavage, SaCas9 autonomously releases the PAM-distal DNA while retaining binding to the PAM. This partial DNA release immediately abolishes its strong interaction with the protospacer DNA and consequently promotes its subsequent dissociation from the PAM. Overall, these data provide a dynamic understanding of SaCas9 and instruct its effective applications.
Collapse
Affiliation(s)
- Siqi Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qian Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xi‐Miao Hou
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Lijuan Guo
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Fangzhu Wang
- State Key Laboratory of Reproductive MedicineCenter for Global HealthNanjing Medical UniversityNanjingChina
| | - Lulu Bi
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Xia Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Hai‐Hong Li
- College of Life SciencesNorthwest A&F UniversityYanglingChina
| | - Fengcai Wen
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- Shanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xu‐Guang Xi
- The LBPAEcole Normale Supérieure Paris‐SaclayCNRSUniversité Paris SaclayGif‐sur-YvetteFrance
| | - Xingxu Huang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Bin Shen
- State Key Laboratory of Reproductive MedicineCenter for Global HealthNanjing Medical UniversityNanjingChina
| | - Bo Sun
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| |
Collapse
|
8
|
Zhang Q, Wen F, Zhang S, Jin J, Bi L, Lu Y, Li M, Xi XG, Huang X, Shen B, Sun B. The post-PAM interaction of RNA-guided spCas9 with DNA dictates its target binding and dissociation. SCIENCE ADVANCES 2019; 5:eaaw9807. [PMID: 31763447 PMCID: PMC6853773 DOI: 10.1126/sciadv.aaw9807] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/17/2019] [Indexed: 05/19/2023]
Abstract
Cas9 is an RNA-guided endonuclease that targets complementary DNA for cleavage and has been repurposed for many biological usages. Cas9 activities are governed by its direct interactions with DNA. However, information about this interplay and the mechanism involved in its direction of Cas9 activity remain obscure. Using a single-molecule approach, we probed Cas9/sgRNA/DNA interactions along the DNA sequence and found two stable interactions flanking the protospacer adjacent motif (PAM). Unexpectedly, one of them is located approximately 14 base pairs downstream of the PAM (post-PAM interaction), which is beyond the apparent footprint of Cas9 on DNA. Loss or occupation of this interaction site on DNA impairs Cas9 binding and cleavage. Consistently, a downstream helicase could readily displace DNA-bound Cas9 by disrupting this relatively weak post-PAM interaction. Our work identifies a critical interaction of Cas9 with DNA that dictates its binding and dissociation, which may suggest distinct strategies to modulate Cas9 activity.
Collapse
Affiliation(s)
- Qian Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengcai Wen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siqi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiachuan Jin
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Lulu Bi
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ying Lu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ming Li
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu-Guang Xi
- LBPA, IDA, ENS de Cachan, CNRS, Université Paris-Saclay, Cachan F-94235, France
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine, Center for Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Bo Sun
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Helicase promotes replication re-initiation from an RNA transcript. Nat Commun 2018; 9:2306. [PMID: 29899338 PMCID: PMC5997990 DOI: 10.1038/s41467-018-04702-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 04/30/2018] [Indexed: 11/12/2022] Open
Abstract
To ensure accurate DNA replication, a replisome must effectively overcome numerous obstacles on its DNA substrate. After encountering an obstacle, a progressing replisome often aborts DNA synthesis but continues to unwind. However, little is known about how DNA synthesis is resumed downstream of an obstacle. Here, we examine the consequences of a non-replicating replisome collision with a co-directional RNA polymerase (RNAP). Using single-molecule and ensemble methods, we find that T7 helicase interacts strongly with a non-replicating T7 DNA polymerase (DNAP) at a replication fork. As the helicase advances, the associated DNAP also moves forward. The presence of the DNAP increases both helicase’s processivity and unwinding rate. We show that such a DNAP, together with its helicase, is indeed able to actively disrupt a stalled transcription elongation complex, and then initiates replication using the RNA transcript as a primer. These observations exhibit T7 helicase’s novel role in replication re-initiation. During DNA replication, replicative helicases play an essential role for DNA unwinding to occur. Here the authors find that bacteriophage T7 helicase is also involved in replication re-initiation by interacting with a non-replicating DNAP and increasing unwinding rate.
Collapse
|
10
|
Peng S, Wang W, Chen C. Breaking the Concentration Barrier for Single-Molecule Fluorescence Measurements. Chemistry 2017; 24:1002-1009. [DOI: 10.1002/chem.201704065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Sijia Peng
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology; Tsinghua University; Beijing, 100084 P.R. China
| | - Wenjuan Wang
- School of Life Sciences and Technology Center for Protein Sciences; Tsinghua University; Beijing, 100084 P.R. China
| | - Chunlai Chen
- School of Life Sciences, Tsinghua-Peking Joint Center for Life Sciences, and Beijing Advanced Innovation Center for Structural Biology; Tsinghua University; Beijing, 100084 P.R. China
| |
Collapse
|