1
|
Ghéczy N, Tao S, Pour-Esmaeil S, Szymańska K, Jarzębski AB, Walde P. Performance of a Flow-Through Enzyme Reactor Prepared from a Silica Monolith and an α-Poly(D-Lysine)-Enzyme Conjugate. Macromol Biosci 2023; 23:e2200465. [PMID: 36598452 DOI: 10.1002/mabi.202200465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/26/2022] [Indexed: 01/05/2023]
Abstract
Horseradish peroxidase (HRP) is covalently bound in aqueous solution to polycationic α-poly(D-lysine) chains of ≈1000 repeating units length, PDL, via a bis-aryl hydrazone bond (BAH). Under the experimental conditions used, about 15 HRP molecules are bound along the PDL chain. The purified PDL-BAH-HRP conjugate is very stable when stored at micromolar HRP concentration in a pH 7.2 phosphate buffer solution at 4 °C. When a defined volume of such a conjugate solution of desired HRP concentration (i.e., HRP activity) is added to a macro- and mesoporous silica monolith with pore sizes of 20-30 µm as well as below 30 nm, quantitative and stable noncovalent conjugate immobilization is achieved. The HRP-containing monolith can be used as flow-through enzyme reactor for bioanalytical applications at neutral or slightly alkaline pH, as demonstrated for the determination of hydrogen peroxide in diluted honey. The conjugate can be detached from the monolith by simple enzyme reactor washing with an aqueous solution of pH 5.0, enabling reloading with fresh conjugate solution at pH 7.2. Compared to previously investigated polycationic dendronized polymer-enzyme conjugates with approximately the same average polymer chain length, the PDL-BAH-HRP conjugate appears to be equally suitable for HRP immobilization on silica surfaces.
Collapse
Affiliation(s)
- Nicolas Ghéczy
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, CH-8093, Switzerland
| | - Siyuan Tao
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, CH-8093, Switzerland
| | - Sajad Pour-Esmaeil
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, CH-8093, Switzerland
| | - Katarzyna Szymańska
- Department of Chemical Engineering and Process Design, Silesian University of Technology, Gliwice, 44-100, Poland
| | - Andrzej B Jarzębski
- Institute of Chemical Engineering, Polish Academy of Sciences, Gliwice, 44-100, Poland
| | - Peter Walde
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich, CH-8093, Switzerland
| |
Collapse
|
2
|
Nagata H, Yoshimoto M, Walde P. Preparation and Catalytic Properties of Carbonic Anhydrase Conjugated to Liposomes through a Bis-Aryl Hydrazone Bond. ACS OMEGA 2023; 8:18637-18652. [PMID: 37273636 PMCID: PMC10233673 DOI: 10.1021/acsomega.3c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/05/2023] [Indexed: 06/06/2023]
Abstract
Liposomes (lipid vesicles) with sizes of about 100-200 nm carrying surface-bound (immobilized) water-soluble enzymes are functionalized molecular compartment systems for possible applications, for example, as therapeutic materials or as catalytic reaction units for running reactions in aqueous media in vitro. One way of covalently attaching enzyme molecules under mild conditions in a controlled way to the surface of preformed liposomes is to apply the spectrophotometrically traceable bis-aryl hydrazone (BAH) bond between the liposome and the enzyme molecules of interest. Using bovine carbonic anhydrase (BCA), an aqueous dispersion of liposome-BAH-BCA - conjugates of defined composition was prepared. The liposomes used consisted of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), N-(methylpolyoxyethylene oxycarbonyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG), and N-(aminopropylpolyoxyethylene oxycarbonyl)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine (DSPE-PEG-NH2). The amino group of some of the DSPE-PEG-NH2 molecules present in the liposomes were converted into an aromatic aldehyde, which (after purification) reacted with (purified) BCA molecules that had on their surface on average one acetone protected aromatic hydrazine. After purification of the liposome-BAH-BCA conjugate dispersion obtained, it was characterized in terms of (i) BCA activity, (ii) overall BCA structure, and (iii) storage stability. For an average liposome of 138 nm diameter, about 1200 BCA molecules were attached to the outer liposome surface. Liposomally bound BCA was found to exhibit (i) similar catalytic activity at 25 °C and (ii) similar storage stability when stored in a dispersed state in aqueous solution at 4 °C as free BCA. Measurements at 5 °C clearly showed that liposome-BAH-BCA is able to catalyze the hydration of carbon dioxide to hydrogen carbonate.
Collapse
Affiliation(s)
- Hikaru Nagata
- Department
of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Makoto Yoshimoto
- Department
of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Peter Walde
- Department
of Materials, ETH-Zürich, Leopold-Ruzicka-Weg 4, Zürich 8093, Switzerland
| |
Collapse
|
3
|
Ghéczy N, Xu W, Szymańska K, Jarzębski AB, Walde P. Controllable Enzyme Immobilization via Simple and Quantitative Adsorption of Dendronized Polymer-Enzyme Conjugates Inside a Silica Monolith for Enzymatic Flow-Through Reactor Applications. ACS OMEGA 2022; 7:26610-26631. [PMID: 35936452 PMCID: PMC9352229 DOI: 10.1021/acsomega.2c02815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Although many different methods are known for the immobilization of enzymes on solid supports for use in flow-through applications as enzyme reactors, the reproducible immobilization of predetermined amounts of catalytically active enzyme molecules remains challenging. This challenge was tackled using a macro- and mesoporous silica monolith as a support and dendronized polymer-enzyme conjugates. The conjugates were first prepared in an aqueous solution by covalently linking enzyme molecules and either horseradish peroxidase (HRP) or bovine carbonic anhydrase (BCA) along the chains of a water-soluble second-generation dendronized polymer using an established procedure. The obtained conjugates are stable biohybrid structures in which the linking unit between the dendronized polymer and each enzyme molecule is a bisaryl hydrazone (BAH) bond. Quantitative and reproducible enzyme immobilization inside the monolith is possible by simply adding a defined volume of a conjugate solution of a defined enzyme concentration to a dry monolith piece of the desired size. In that way, (i) the entire volume of the conjugate solution is taken up by the monolith piece due to capillary forces and (ii) all conjugates of the added conjugate solution remain stably adsorbed (immobilized) noncovalently without detectable leakage from the monolith piece. The observed flow-through activity of the resulting enzyme reactors was directly proportional to the amount of conjugate used for the reactor preparation. With conjugate solutions consisting of defined amounts of both types of conjugates, the controlled coimmobilization of the two enzymes, namely, BCA and HRP, was shown to be possible in a simple way. Different stability tests of the enzyme reactors were carried out. Finally, the enzyme reactors were applied to the catalysis of a two-enzyme cascade reaction in two types of enzymatic flow-through reactor systems with either coimmobilized or sequentially immobilized BCA and HRP. Depending on the composition of the substrate solution that was pumped through the two types of enzyme reactor systems, the coimmobilized enzymes performed significantly better than the sequentially immobilized ones. This difference, however, is not due to a molecular proximity effect with regard to the enzymes but rather originates from the kinetic features of the cascade reaction used. Overall, the method developed for the controllable and reproducible immobilization of enzymes in the macro- and mesoporous silica monolith offers many possibilities for systematic investigations of immobilized enzymes in enzymatic flow-through reactors, potentially for any type of enzyme.
Collapse
Affiliation(s)
- Nicolas Ghéczy
- Laboratory
for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Weina Xu
- Laboratory
for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| | - Katarzyna Szymańska
- Department
of Chemical Engineering and Process Design, Silesian University of Technology, Księdza Marcina Strzody 7, Gliwice 44-100, Poland
| | - Andrzej B. Jarzębski
- Institute
of Chemical Engineering, Polish Academy
of Sciences, Baltycka 5, Gliwice 44-100, Poland
| | - Peter Walde
- Laboratory
for Multifunctional Materials, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, Zürich 8093, Switzerland
| |
Collapse
|
4
|
Conjugation of a zwitterionic polymer with dimethyl chains to lipase significantly increases the enzyme activity and stability. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Dubey NC, Tripathi BP. Nature Inspired Multienzyme Immobilization: Strategies and Concepts. ACS APPLIED BIO MATERIALS 2021; 4:1077-1114. [PMID: 35014469 DOI: 10.1021/acsabm.0c01293] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In a biological system, the spatiotemporal arrangement of enzymes in a dense cellular milieu, subcellular compartments, membrane-associated enzyme complexes on cell surfaces, scaffold-organized proteins, protein clusters, and modular enzymes have presented many paradigms for possible multienzyme immobilization designs that were adapted artificially. In metabolic channeling, the catalytic sites of participating enzymes are close enough to channelize the transient compound, creating a high local concentration of the metabolite and minimizing the interference of a competing pathway for the same precursor. Over the years, these phenomena had motivated researchers to make their immobilization approach naturally realistic by generating multienzyme fusion, cluster formation via affinity domain-ligand binding, cross-linking, conjugation on/in the biomolecular scaffold of the protein and nucleic acids, and self-assembly of amphiphilic molecules. This review begins with the discussion of substrate channeling strategies and recent empirical efforts to build it synthetically. After that, an elaborate discussion covering prevalent concepts related to the enhancement of immobilized enzymes' catalytic performance is presented. Further, the central part of the review summarizes the progress in nature motivated multienzyme assembly over the past decade. In this section, special attention has been rendered by classifying the nature-inspired strategies into three main categories: (i) multienzyme/domain complex mimic (scaffold-free), (ii) immobilization on the biomolecular scaffold, and (iii) compartmentalization. In particular, a detailed overview is correlated to the natural counterpart with advances made in the field. We have then discussed the beneficial account of coassembly of multienzymes and provided a synopsis of the essential parameters in the rational coimmobilization design.
Collapse
Affiliation(s)
- Nidhi C Dubey
- Institute of Molecular Medicine, Jamia Hamdard, New Delhi 110062, India
| | - Bijay P Tripathi
- Department of Materials Science and Engineering, Indian institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
6
|
Ghéczy N, Sasaki K, Yoshimoto M, Pour-Esmaeil S, Kröger M, Stano P, Walde P. A two-enzyme cascade reaction consisting of two reaction pathways. Studies in bulk solution for understanding the performance of a flow-through device with immobilised enzymes. RSC Adv 2020; 10:18655-18676. [PMID: 35518281 PMCID: PMC9053938 DOI: 10.1039/d0ra01204a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Enzyme-catalysed cascade reactions in flow-through systems with immobilised enzymes currently are of great interest for exploring their potential for biosynthetic and bioanalytical applications. Basic studies in this field often aim at understanding the stability of the immobilised enzymes and their catalytic performance, for example, in terms of yield of a desired reaction product, analyte detection limit, enzyme stability or reaction reproducibility. In the work presented, a cascade reaction involving the two enzymes bovine carbonic anhydrase (BCA) and horseradish peroxidase (HRP) – with hydrogen peroxide (H2O2) as HRP “activator” – was first investigated in great detail in bulk solution at pH = 7.2. The reaction studied is the hydrolysis and oxidation of 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA) to 2′,7′-dichlorofluorescein (DCF), which was found to proceed along two reaction pathways. This two-enzyme cascade reaction was then applied for analysing the performance of BCA and HRP immobilised in glass fiber filters which were placed inside a filter holder device through which a DCFH2-DA/H2O2 substrate solution was pumped. Comparison was made between (i) co-immobilised and (ii) sequentially immobilised enzymes (BCA first, HRP second). Significant differences for the two arrangements in terms of measured product yield (DCF) could be explained based on quantitative UV/vis absorption measurements carried out in bulk solution. We found that the lower DCF yield observed for sequentially immobilised enzymes originates from a change in one of the two possible reaction pathways due to enzyme separation, which was not the case for enzymes that were co-immobilised (or simultaneously present in the bulk solution experiments). The higher DCF yield observed for co-immobilised enzymes did not originate from a molecular proximity effect (no increased oxidation compared to sequential immobilisation). A cascade reaction catalysed by bovine carbonic anhydrase (BCA) and horseradish peroxidase (HRP) proceeds over two possible pathways, which explains differences in product formation for differently immobilised enzymes in flow-through reactions.![]()
Collapse
Affiliation(s)
- Nicolas Ghéczy
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| | - Kai Sasaki
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| | - Makoto Yoshimoto
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland .,Department of Applied Chemistry, Yamaguchi University Tokiwadai 2-16-1 Ube 755-8611 Japan
| | - Sajad Pour-Esmaeil
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zürich Leopold-Ruzicka-Weg 4 CH-8093 Zürich Switzerland
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento Ecotekne 73100 Lecce Italy
| | - Peter Walde
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| |
Collapse
|
7
|
Yoshimoto M, Walde P. Immobilized carbonic anhydrase: preparation, characteristics and biotechnological applications. World J Microbiol Biotechnol 2018; 34:151. [PMID: 30259182 DOI: 10.1007/s11274-018-2536-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022]
Abstract
Carbonic anhydrase (CA) is an essential metalloenzyme in living systems for accelerating the hydration and dehydration of carbon dioxide. CA-catalyzed reactions can be applied in vitro for capturing industrially emitted gaseous carbon dioxide in aqueous solutions. To facilitate this type of practical application, the immobilization of CA on or inside solid or soft support materials is of great importance because the immobilization of enzymes in general offers the opportunity for enzyme recycling or long-term use in bioreactors. Moreover, the thermal/storage stability and reactivity of immobilized CA can be modulated through the physicochemical nature and structural characteristics of the support material used. This review focuses on (i) immobilization methods which have been applied so far, (ii) some of the characteristic features of immobilized forms of CA, and (iii) biotechnological applications of immobilized CA. The applications described not only include the CA-assisted capturing and sequestration of carbon dioxide, but also the CA-supported bioelectrochemical conversion of CO2 into organic molecules, and the detection of clinically important CA inhibitors. Furthermore, immobilized CA can be used in biomimetic materials synthesis involving cascade reactions, e.g. for bone regeneration based on calcium carbonate formation from urea with two consecutive reactions catalyzed by urease and CA.
Collapse
Affiliation(s)
- Makoto Yoshimoto
- Department of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube, 755-8611, Japan.
| | - Peter Walde
- Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093, Zurich, Switzerland
| |
Collapse
|
8
|
Yoshimoto M, Schweizer T, Rathlef M, Pleij T, Walde P. Immobilization of Carbonic Anhydrase in Glass Micropipettes and Glass Fiber Filters for Flow-Through Reactor Applications. ACS OMEGA 2018; 3:10391-10405. [PMID: 31459167 PMCID: PMC6645021 DOI: 10.1021/acsomega.8b01517] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 05/20/2023]
Abstract
There are various ways of immobilizing carbonic anhydrase (CA) on solid materials. One of the final aims is to apply immobilized CA for the catalytic hydration of carbon dioxide (CO2) as a first step in the conversion of gaseous CO2 into solid products. The immobilization method investigated allows a straightforward, stable, and quantifiable immobilization of bovine erythrocyte carbonic anhydrase (BCA) on silicate surfaces. The method is based on the use of a water-soluble, polycationic second-generation dendronized polymer with on average 1000 repeating units, abbreviated as de-PG21000. Several copies of BCA were first covalently linked to de-PG21000 through stable bisaryl hydrazone (BAH) bonds. Then, the de-PG21000-BAH-BCA conjugates obtained were adsorbed noncovalently either on microscopy glass coverslips, inside glass micropipettes, or in porous glass fiber filters. The apparent density of the immobilized BCA on the glass surfaces was about 8-10 pmol/cm2. In all three cases, the immobilized enzyme was highly active and stable when tested with p-nitrophenyl acetate as a model enzyme substrate at room temperature. The micropipettes and the glass fiber filters were applied as flow-through systems for continuous operation at room temperature. In the case of the glass fiber filters, the filters were placed inside a homemade flow-through filter holder which allows flow-through runs with more than one filter connected in series. This offers the opportunity of increasing the substrate conversion by increasing the number of BCA-containing filters.
Collapse
Affiliation(s)
- Makoto Yoshimoto
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- Department
of Applied Chemistry, Yamaguchi University, Tokiwadai 2-16-1, Ube 755-8611, Japan
| | - Thomas Schweizer
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Marco Rathlef
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Tazio Pleij
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Peter Walde
- Department
of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
- E-mail:
| |
Collapse
|