1
|
Douw A, Perez-Gil J, Schenk G, Vickers CE. Iron-Sulfur Cluster Enzymes of the Methylerythritol Phosphate Pathway: IspG and IspH. Biochemistry 2025; 64:2544-2555. [PMID: 40432238 PMCID: PMC12178251 DOI: 10.1021/acs.biochem.4c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025]
Abstract
Iron-sulfur cluster (Fe-S) enzymes catalyze important biological processes in cellular metabolism. They evolved in the preoxic world and are oxygen sensitive; biology has therefore evolved a range of mechanisms to protect them from oxidative damage. The 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis has two Fe-S enzymes: IspG and IspH. Both enzymes utilize 3:1 site-differentiated [4Fe-4S] clusters to perform rather unique dehydroxylation reactions. They may play roles in facilitating oxidative stress sensing and signaling. While bacterial IspG and IspH are well characterized, plant IspG and IspH are not. A particularly fascinating aspect of these enzymes is their ability to balance both their biosynthetic catalytic roles and their presumptive signaling roles in metabolism. Here we review current knowledge about the mechanism, structures, and function of IspG and IspH, and we propose future research directions to help answer the many remaining questions about them. We also provide a primer for investigators keen to start working with these enzymes, as they share with the Fe-S family a set of unique handling and experimental challenges.
Collapse
Affiliation(s)
- Andrew Douw
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland4072, Australia
- ARC
Centre of Excellence in Synthetic Biology, Centre for Agriculture
and the Bioeconomy, and School of Environment and Biological Sciences, Queensland University of Technology, Brisbane, Queensland4000, Australia
| | - Jordi Perez-Gil
- ARC
Centre of Excellence in Synthetic Biology, Australian Genome Foundry,
and School of Natural Sciences, Macquarie
University, Sydney, New South Wales2109, Australia
| | - Gerhard Schenk
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland4072, Australia
| | - Claudia E. Vickers
- ARC
Centre of Excellence in Synthetic Biology, Centre for Agriculture
and the Bioeconomy, and School of Environment and Biological Sciences, Queensland University of Technology, Brisbane, Queensland4000, Australia
- BioBuilt
Solutions, Brisbane, Queensland4075, Australia
| |
Collapse
|
2
|
Jansing M, Mielenbrink S, Rosenbach H, Metzger S, Span I. Maturation strategy influences expression levels and cofactor occupancy in Fe-S proteins. J Biol Inorg Chem 2023; 28:187-204. [PMID: 36527507 PMCID: PMC9981529 DOI: 10.1007/s00775-022-01972-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/17/2022] [Indexed: 12/23/2022]
Abstract
Iron-sulfur clusters are ubiquitous cofactors required for fundamental biological processes. Structural and spectroscopic analysis of Fe-S proteins is often limited by low cluster occupancy in recombinantly produced proteins. In this work, we report a systematic comparison of different maturation strategies for three well-established [4Fe-4S] proteins. Aconitase B, HMBPP reductase (IspH), and quinolinate synthase (NadA) were used as model proteins as they have previously been characterized. The protein production strategies include expression of the gene of interest in BL21(DE3) cells, maturation of the apo protein using chemical or semi-enzymatic reconstitution, co-expression with two different plasmids containing the iron-sulfur cluster (isc) or sulfur formation (suf) operon, a cell strain lacking IscR, the transcriptional regulator of the ISC machinery, and an engineered "SufFeScient" derivative of BL21(DE3). Our results show that co-expression of a Fe-S biogenesis pathway influences the protein yield and the cluster content of the proteins. The presence of the Fe-S cluster is contributing to correct folding and structural stability of the proteins. In vivo maturation reduces the formation of Fe-S aggregates, which occur frequently when performing chemical reconstitution. Furthermore, we show that the in vivo strategies can be extended to the radical SAM protein ThnB, which was previously only maturated by chemical reconstitution. Our results shed light on the differences of in vitro and in vivo Fe-S cluster maturation and points out the pitfalls of chemical reconstitution.
Collapse
Affiliation(s)
- Melissa Jansing
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Steffen Mielenbrink
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Hannah Rosenbach
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sabine Metzger
- MS-Platform Biocenter, Cluster of Excellence on Plant Science (CEPLAS), University of Cologne, Zülpicher Strasse 47B, 50674 Cologne, Germany
| | - Ingrid Span
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225, Düsseldorf, Germany. .,Bioanorganische Chemie, Department Chemie und Pharmazie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 1, 91058, Erlangen, Germany.
| |
Collapse
|
3
|
Carcinogenesis as Side Effects of Iron and Oxygen Utilization: From the Unveiled Truth toward Ultimate Bioengineering. Cancers (Basel) 2020; 12:cancers12113320. [PMID: 33182727 PMCID: PMC7698037 DOI: 10.3390/cancers12113320] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Cancer is a major cause of human mortality worldwide. No life on earth can live without iron. Persistent oxidative stress resulting from continuous use of iron and oxygen may be a fundamental cause of carcinogenesis. Many animal models demonstrated that excess iron may lead to carcinogenesis. This is supported by a variety of human epidemiological data on cancer risk and prognosis. Cancer is basically a disease of the genome with persistently activated oncogenes and inactivated tumor suppressor genes through which iron addiction with ferroptosis-resistance is established. We predict that fine use of nanomaterials and non-thermal plasma may be able to reverse this situation. Abstract Evolution from the first life on earth to humans took ~3.8 billion years. During the time there have been countless struggles among the species. Mycobacterium tuberculosis was the last major uncontrollable species against the human public health worldwide. After the victory with antibiotics, cancer has become the leading cause of death since 1981 in Japan. Considering that life inevitably depends on ceaseless electron transfers through iron and oxygen, we believe that carcinogenesis is intrinsically unavoidable side effects of using iron and oxygen. Many animal models unequivocally revealed that excess iron is a risk for carcinogenesis. This is supported by a variety of human epidemiological data on cancer risk and prognosis. Cancer is basically a disease of the genome with persistently activated oncogenes and inactivated tumor suppressor genes through which iron addiction with ferroptosis-resistance is maintained. Engineering has made a great advance in the past 50 years. In particular, nanotechnology is distinct in that the size of the engineered molecules is similar to that of our biomolecules. While some nano-molecules are found carcinogenic, there are principles to avoid such carcinogenicity with a smart possibility to use nano-molecules to specifically kill cancer cells. Non-thermal plasma is another modality to fight against cancer.
Collapse
|
4
|
Silva RMB, Grodick MA, Barton JK. UvrC Coordinates an O 2-Sensitive [4Fe4S] Cofactor. J Am Chem Soc 2020; 142:10964-10977. [PMID: 32470300 DOI: 10.1021/jacs.0c01671] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recent advances have led to numerous landmark discoveries of [4Fe4S] clusters coordinated by essential enzymes in repair, replication, and transcription across all domains of life. The cofactor has notably been challenging to observe for many nucleic acid processing enzymes due to several factors, including a weak bioinformatic signature of the coordinating cysteines and lability of the metal cofactor. To overcome these challenges, we have used sequence alignments, an anaerobic purification method, iron quantification, and UV-visible and electron paramagnetic resonance spectroscopies to investigate UvrC, the dual-incision endonuclease in the bacterial nucleotide excision repair (NER) pathway. The characteristics of UvrC are consistent with [4Fe4S] coordination with 60-70% cofactor incorporation, and additionally, we show that, bound to UvrC, the [4Fe4S] cofactor is susceptible to oxidative degradation with aggregation of apo species. Importantly, in its holo form with the cofactor bound, UvrC forms high affinity complexes with duplexed DNA substrates; the apparent dissociation constants to well-matched and damaged duplex substrates are 100 ± 20 nM and 80 ± 30 nM, respectively. This high affinity DNA binding contrasts reports made for isolated protein lacking the cofactor. Moreover, using DNA electrochemistry, we find that the cluster coordinated by UvrC is redox-active and participates in DNA-mediated charge transport chemistry with a DNA-bound midpoint potential of 90 mV vs NHE. This work highlights that the [4Fe4S] center is critical to UvrC.
Collapse
Affiliation(s)
- Rebekah M B Silva
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael A Grodick
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jacqueline K Barton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
5
|
Elevated Expression of a Functional Suf Pathway in Escherichia coli BL21(DE3) Enhances Recombinant Production of an Iron-Sulfur Cluster-Containing Protein. J Bacteriol 2020; 202:JB.00496-19. [PMID: 31712282 DOI: 10.1128/jb.00496-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023] Open
Abstract
Structural and spectroscopic analysis of iron-sulfur [Fe-S] cluster-containing proteins is often limited by the occupancy and yield of recombinantly produced proteins. Here we report that Escherichia coli BL21(DE3), a strain routinely used to overproduce [Fe-S] cluster-containing proteins, has a nonfunctional Suf pathway, one of two E. coli [Fe-S] cluster biogenesis pathways. We confirmed that BL21(DE3) and commercially available derivatives carry a deletion that results in an in-frame fusion of sufA and sufB genes within the sufABCDSE operon. We show that this fusion protein accumulates in cells but is inactive in [Fe-S] cluster biogenesis. Restoration of an intact Suf pathway combined with enhanced suf operon expression led to a remarkable (∼3-fold) increase in the production of the [4Fe-4S] cluster-containing BchL protein, a key component of the dark-operative protochlorophyllide oxidoreductase complex. These results show that this engineered "SufFeScient" derivative of BL21(DE3) is suitable for enhanced large-scale synthesis of an [Fe-S] cluster-containing protein.IMPORTANCE Large quantities of recombinantly overproduced [Fe-S] cluster-containing proteins are necessary for their in-depth biochemical characterization. Commercially available E. coli strain BL21(DE3) and its derivatives have a mutation that inactivates the function of one of the two native pathways (Suf pathway) responsible for cluster biogenesis. Correction of the mutation, combined with sequence changes that elevate Suf protein levels, can increase yield and cluster occupancy of [Fe-S] cluster-containing enzymes, facilitating the biochemical analysis of this fascinating group of proteins.
Collapse
|
6
|
Ter Beek J, Parkash V, Bylund GO, Osterman P, Sauer-Eriksson AE, Johansson E. Structural evidence for an essential Fe-S cluster in the catalytic core domain of DNA polymerase ϵ. Nucleic Acids Res 2019; 47:5712-5722. [PMID: 30968138 PMCID: PMC6582351 DOI: 10.1093/nar/gkz248] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 03/10/2019] [Accepted: 03/27/2019] [Indexed: 12/15/2022] Open
Abstract
DNA polymerase ϵ (Pol ϵ), the major leading-strand DNA polymerase in eukaryotes, has a catalytic subunit (Pol2) and three non-catalytic subunits. The N-terminal half of Pol2 (Pol2CORE) exhibits both polymerase and exonuclease activity. It has been suggested that both the non-catalytic C-terminal domain of Pol2 (with the two cysteine motifs CysA and CysB) and Pol2CORE (with the CysX cysteine motif) are likely to coordinate an Fe–S cluster. Here, we present two new crystal structures of Pol2CORE with an Fe–S cluster bound to the CysX motif, supported by an anomalous signal at that position. Furthermore we show that purified four-subunit Pol ϵ, Pol ϵ CysAMUT (C2111S/C2133S), and Pol ϵ CysBMUT (C2167S/C2181S) all have an Fe–S cluster that is not present in Pol ϵ CysXMUT (C665S/C668S). Pol ϵ CysAMUT and Pol ϵ CysBMUT behave similarly to wild-type Pol ϵ in in vitro assays, but Pol ϵ CysXMUT has severely compromised DNA polymerase activity that is not the result of an excessive exonuclease activity. Tetrad analyses show that haploid yeast strains carrying CysXMUT are inviable. In conclusion, Pol ϵ has a single Fe–S cluster bound at the base of the P-domain, and this Fe–S cluster is essential for cell viability and polymerase activity.
Collapse
Affiliation(s)
- Josy Ter Beek
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
| | - Vimal Parkash
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
| | - Göran O Bylund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
| | - Pia Osterman
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
| | | | - Erik Johansson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 90187, Sweden
| |
Collapse
|
7
|
Valentino H, Sobrado P. Performing anaerobic stopped-flow spectrophotometry inside of an anaerobic chamber. Methods Enzymol 2019; 620:51-88. [PMID: 31072501 DOI: 10.1016/bs.mie.2019.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The catalytic cycle of most flavin-dependent enzymes can be divided into oxidative and reductive half-reactions. Although some enzymes are oxidized by electron carrier proteins or organic compounds, many use oxygen as the final electron acceptor. In order to properly study the reductive half-reaction of flavin-dependent enzyme that react with oxygen, as in the case of oxidases and monooxygenases, it is necessary to establish anaerobic conditions that will only allow the reduction process to be monitored. The reduced flavoenzyme can be further studied by exposing it to oxygen to monitor the oxidative half-reaction. Anaerobic chambers provide an ideal environment for performing these experiments as they reliably maintain an anaerobic atmosphere inside a large workspace. A common tool used to study flavin-dependent enzymes is the stopped-flow spectrophotometry. This chapter describes methods for performing stopped-flow experiments in an anaerobic chamber. We include information about the chamber components, setting up a stopped-flow spectrophotometer inside of a chamber, preparing anaerobic solutions, and performing experiments to measure the reductive and oxidative half-reactions of flavin-dependent monooxygenases.
Collapse
Affiliation(s)
- Hannah Valentino
- Department of Biochemistry, Center for Drug Discovery, Virginia Tech, Blacksburg, VA, United States
| | - Pablo Sobrado
- Department of Biochemistry, Center for Drug Discovery, Virginia Tech, Blacksburg, VA, United States.
| |
Collapse
|
8
|
Uchendu SN, Rafalowski A, Cohn EF, Davoren LW, Taylor EA. Anaerobic Protein Purification and Kinetic Analysis via Oxygen Electrode for Studying DesB Dioxygenase Activity and Inhibition. J Vis Exp 2018:58307. [PMID: 30346405 PMCID: PMC6235412 DOI: 10.3791/58307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025] Open
Abstract
Oxygen-sensitive proteins, including those enzymes which utilize oxygen as a substrate, can have reduced stability when purified using traditional aerobic purification methods. This manuscript illustrates the technical details involved in the anaerobic purification process, including the preparation of buffers and reagents, the methods for column chromatography in a glove box, and the desalting of the protein prior to kinetics. Also described are the methods for preparing and using an oxygen electrode to perform kinetic characterization of an oxygen-utilizing enzyme. These methods are illustrated using the dioxygenase enzyme DesB, a gallate dioxygenase from the bacterium Sphingobium sp. strain SYK-6.
Collapse
Affiliation(s)
| | | | - Erin F Cohn
- Department of Chemistry, Wesleyan University
| | | | | |
Collapse
|