1
|
Han TH, Vicidomini R, Ramos CI, Mayer ML, Serpe M. The gating properties of Drosophila NMJ glutamate receptors and their dependence on Neto. J Physiol 2024; 602:7043-7064. [PMID: 39602131 DOI: 10.1113/jp287331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
The Drosophila neuromuscular junction (NMJ) is a powerful genetic system that has revealed numerous conserved mechanisms for synapse development and homeostasis. The fly NMJ uses glutamate as the excitatory neurotransmitter and relies on kainate-type glutamate receptors and their auxiliary protein Neto for synapse assembly and function. However, despite decades of study, the reconstitution of NMJ glutamate receptors using heterologous systems has been achieved only recently, and there are no reports on the gating properties for the recombinant receptors. Here, using outside-out, patch clamp recordings and fast ligand application, we examine for the first time the biophysical properties of native type-A and type-B NMJ receptors in complexes with either Neto-α or Neto-β and compare them with recombinant receptors expressed in HEK293T cells. We found that type-A and type-B receptors have strikingly different gating properties that are further modulated by Neto-α and Neto-β. We captured single-channel events and revealed major differences between type-A and type-B receptors and also between Neto splice variants. Surprisingly, we found that deactivation is extremely fast and that the decay of synaptic currents resembles the rate of ionotropic glutamate receptor (iGluR) desensitization. The functional analyses of recombinant iGluRs that we report here should greatly facilitate the interpretation of compound in vivo phenotypes of mutant animals. KEY POINTS: We report the reconstitution of Drosophila neuromuscular junction ionotropic glutamate receptors (iGluRs) with Neto splice forms. Using outside-out patches and fast ligand application, we examine the deactivation and desensitization of the four iGluR/Neto complexes found in vivo. Expression of functional channels is absolutely dependent on Neto. Single-channel recordings revealed different lifetimes for different receptor complexes. The decay of synaptic currents is controlled by desensitization.
Collapse
Affiliation(s)
- Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Cathy Isaura Ramos
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
- Present address: The Institute of Functional Genomics of Lyon, Lyon, France
| | - Mark L Mayer
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| |
Collapse
|
2
|
Han TH, Vicidomini R, Ramos CI, Mayer M, Serpe M. Neto proteins differentially modulate the gating properties of Drosophila NMJ glutamate receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590603. [PMID: 38903091 PMCID: PMC11188076 DOI: 10.1101/2024.04.22.590603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The formation of functional synapses requires co-assembly of ion channels with their accessory proteins which controls where, when, and how neurotransmitter receptors function. The auxiliary protein Neto modulates the function of kainate-type glutamate receptors in vertebrates as well as at the Drosophila neuromuscular junction (NMJ), a glutamatergic synapse widely used for genetic studies on synapse development. We previously reported that Neto is essential for the synaptic recruitment and function of glutamate receptors. Here, using outside-out patch-clamp recordings and fast ligand application, we examine for the first time the biophysical properties of recombinant Drosophila NMJ receptors expressed in HEK293T cells and compare them with native receptor complexes of genetically controlled composition. The two Neto isoforms, Neto-α and Neto-β, differentially modulate the gating properties of NMJ receptors. Surprisingly, we found that deactivation is extremely fast and that the decay of synaptic currents resembles the rate of iGluR desensitization. The functional analyses of recombinant iGluRs that we report here should greatly facilitate the interpretation of compound in vivo phenotypes of mutant animals.
Collapse
Affiliation(s)
- Tae Hee Han
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Cathy Isaura Ramos
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
- current address: The Institute of Functional Genomics of Lyon, 69007 Lyon, France
| | - Mark Mayer
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, 20892, USA
| | - Mihaela Serpe
- Section on Cellular Communication, Eunice Kennedy Shiver National Institute of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
3
|
Troup M, Tainton-Heap LAL, van Swinderen B. Neural Ensemble Fragmentation in the Anesthetized Drosophila Brain. J Neurosci 2023; 43:2537-2551. [PMID: 36868857 PMCID: PMC10082453 DOI: 10.1523/jneurosci.1657-22.2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
General anesthetics cause a profound loss of behavioral responsiveness in all animals. In mammals, general anesthesia is induced in part by the potentiation of endogenous sleep-promoting circuits, although "deep" anesthesia is understood to be more similar to coma (Brown et al., 2011). Surgically relevant concentrations of anesthetics, such as isoflurane and propofol, have been shown to impair neural connectivity across the mammalian brain (Mashour and Hudetz, 2017; Yang et al., 2021), which presents one explanation why animals become largely unresponsive when exposed to these drugs. It remains unclear whether general anesthetics affect brain dynamics similarly in all animal brains, or whether simpler animals, such as insects, even display levels of neural connectivity that could be disrupted by these drugs. Here, we used whole-brain calcium imaging in behaving female Drosophila flies to investigate whether isoflurane anesthesia induction activates sleep-promoting neurons, and then inquired how all other neurons across the fly brain behave under sustained anesthesia. We were able to track the activity of hundreds of neurons simultaneously during waking and anesthetized states, for spontaneous conditions as well as in response to visual and mechanical stimuli. We compared whole-brain dynamics and connectivity under isoflurane exposure to optogenetically induced sleep. Neurons in the Drosophila brain remain active during general anesthesia as well as induced sleep, although flies become behaviorally inert under both treatments. We identified surprisingly dynamic neural correlation patterns in the waking fly brain, suggesting ensemble-like behavior. These become more fragmented and less diverse under anesthesia but remain wake-like during induced sleep.SIGNIFICANCE STATEMENT When humans are rendered immobile and unresponsive by sleep or general anesthetics, their brains do not shut off - they just change how they operate. We tracked the activity of hundreds of neurons simultaneously in the brains of fruit flies that were anesthetized by isoflurane or genetically put to sleep, to investigate whether these behaviorally inert states shared similar brain dynamics. We uncovered dynamic patterns of neural activity in the waking fly brain, with stimulus-responsive neurons constantly changing through time. Wake-like neural dynamics persisted during induced sleep but became more fragmented under isoflurane anesthesia. This suggests that, like larger brains, the fly brain might also display ensemble-like behavior, which becomes degraded rather than silenced under general anesthesia.
Collapse
Affiliation(s)
- Michael Troup
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lucy A L Tainton-Heap
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
4
|
Yang E, Bu W, Suma A, Carnevale V, Grasty KC, Loll PJ, Woll K, Bhanu N, Garcia BA, Eckenhoff RG, Covarrubias M. Binding Sites and the Mechanism of Action of Propofol and a Photoreactive Analogue in Prokaryotic Voltage-Gated Sodium Channels. ACS Chem Neurosci 2021; 12:3898-3914. [PMID: 34607428 DOI: 10.1021/acschemneuro.1c00495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Propofol, one of the most commonly used intravenous general anesthetics, modulates neuronal function by interacting with ion channels. The mechanisms that link propofol binding to the modulation of distinct ion channel states, however, are not understood. To tackle this problem, we investigated the prokaryotic ancestors of eukaryotic voltage-gated Na+ channels (Navs) using unbiased photoaffinity labeling (PAL) with a diazirine derivative of propofol (AziPm), electrophysiological methods, and mutagenesis. AziPm inhibits Nav function in a manner that is indistinguishable from that of the parent compound by promoting activation-coupled inactivation. In several replicates (8/9) involving NaChBac and NavMs, we found adducts at residues located at the C-terminal end of the S4 voltage sensor, the S4-S5 linker, and the N-terminal end of the S5 segment. However, the non-inactivating mutant NaChBac-T220A yielded adducts that were different from those found in the wild-type counterpart, which suggested state-dependent changes at the binding site. Then, using molecular dynamics simulations to further elucidate the structural basis of Nav modulation by propofol, we show that the S4 voltage sensors and the S4-S5 linkers shape two distinct propofol binding sites in a conformation-dependent manner. Supporting the PAL and MD simulation results, we also found that Ala mutations of a subset of adducted residues have distinct effects on gating modulation of NaChBac and NavMs by propofol. The results of this study provide direct insights into the structural basis of the mechanism through which propofol binding promotes activation-coupled inactivation to inhibit Nav channel function.
Collapse
Affiliation(s)
- Elaine Yang
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
| | - Weiming Bu
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Antonio Suma
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, United States
- Dipartimento di Fisica, Universit̀a di Bari, and Sezione INFN di Bari, via Amendola 173, Bari 70126, Italy
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Kimberly C. Grasty
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Patrick J. Loll
- Department of Biochemistry and Molecular Biology, College of Medicine, Drexel University, Philadelphia, Pennsylvania 19102, United States
| | - Kellie Woll
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Natarajan Bhanu
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Benjamin A. Garcia
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Roderic G. Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Manuel Covarrubias
- Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, United States
- Bluemle Life Sciences Building, 233 S 10th Street, Room 231, Philadelphia, Pennsylvania 19107, United States
| |
Collapse
|
5
|
A vertebrate model to reveal neural substrates underlying the transitions between conscious and unconscious states. Sci Rep 2020; 10:15789. [PMID: 32978423 PMCID: PMC7519646 DOI: 10.1038/s41598-020-72669-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 12/16/2022] Open
Abstract
The field of neuropharmacology has not yet achieved a full understanding of how the brain transitions between states of consciousness and drug-induced unconsciousness, or anesthesia. Many small molecules are used to alter human consciousness, but the repertoire of underlying molecular targets, and thereby the genes, are incompletely understood. Here we describe a robust larval zebrafish model of anesthetic action, from sedation to general anesthesia. We use loss of movement under three different conditions, spontaneous movement, electrical stimulation or a tap, as a surrogate for sedation and general anesthesia, respectively. Using these behavioral patterns, we find that larval zebrafish respond to inhalational and IV anesthetics at concentrations similar to mammals. Additionally, known sedative drugs cause loss of spontaneous larval movement but not to the tap response. This robust, highly tractable vertebrate model can be used in the detection of genes and neural substrates involved in the transition from consciousness to unconsciousness.
Collapse
|
6
|
Activity-Dependent Global Downscaling of Evoked Neurotransmitter Release across Glutamatergic Inputs in Drosophila. J Neurosci 2020; 40:8025-8041. [PMID: 32928887 DOI: 10.1523/jneurosci.0349-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Within mammalian brain circuits, activity-dependent synaptic adaptations, such as synaptic scaling, stabilize neuronal activity in the face of perturbations. Stability afforded through synaptic scaling involves uniform scaling of quantal amplitudes across all synaptic inputs formed on neurons, as well as on the postsynaptic side. It remains unclear whether activity-dependent uniform scaling also operates within peripheral circuits. We tested for such scaling in a Drosophila larval neuromuscular circuit, where the muscle receives synaptic inputs from different motoneurons. We used motoneuron-specific genetic manipulations to increase the activity of only one motoneuron and recordings of postsynaptic currents from inputs formed by the different motoneurons. We discovered an adaptation which caused uniform downscaling of evoked neurotransmitter release across all inputs through decreases in release probabilities. This "presynaptic downscaling" maintained the relative differences in neurotransmitter release across all inputs around a homeostatic set point, caused a compensatory decrease in synaptic drive to the muscle affording robust and stable muscle activity, and was induced within hours. Presynaptic downscaling was associated with an activity-dependent increase in Drosophila vesicular glutamate transporter expression. Activity-dependent uniform scaling can therefore manifest also on the presynaptic side to produce robust and stable circuit outputs. Within brain circuits, uniform downscaling on the postsynaptic side is implicated in sleep- and memory-related processes. Our results suggest that evaluation of such processes might be broadened to include uniform downscaling on the presynaptic side.SIGNIFICANCE STATEMENT To date, compensatory adaptations which stabilise target cell activity through activity-dependent global scaling have been observed only within central circuits, and on the postsynaptic side. Considering that maintenance of stable activity is imperative for the robust function of the nervous system as a whole, we tested whether activity-dependent global scaling could also manifest within peripheral circuits. We uncovered a compensatory adaptation which causes global scaling within a peripheral circuit and on the presynaptic side through uniform downscaling of evoked neurotransmitter release. Unlike in central circuits, uniform scaling maintains functionality over a wide, rather than a narrow, operational range, affording robust and stable activity. Activity-dependent global scaling therefore operates on both the presynaptic and postsynaptic sides to maintain target cell activity.
Collapse
|
7
|
Proportional Downscaling of Glutamatergic Release Sites by the General Anesthetic Propofol at Drosophila Motor Nerve Terminals. eNeuro 2020; 7:ENEURO.0422-19.2020. [PMID: 32019872 PMCID: PMC7053172 DOI: 10.1523/eneuro.0422-19.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 01/21/2020] [Accepted: 01/24/2020] [Indexed: 01/12/2023] Open
Abstract
Propofol is the most common general anesthetic used for surgery in humans, yet its complete mechanism of action remains elusive. In addition to potentiating inhibitory synapses in the brain, propofol also impairs excitatory neurotransmission. We use electrophysiological recordings from individual glutamatergic boutons in male and female larval Drosophila melanogaster motor nerve terminals to characterize this effect. We recorded from two bouton types, which have distinct presynaptic physiology and different average numbers of release sites or active zones. We show that a clinically relevant dose of propofol (3 μm) impairs neurotransmitter release similarly at both bouton types by decreasing the number of active release sites by half, without affecting release probability. In contrast, an analog of propofol has no effect on glutamate release. Coexpressing a truncated syntaxin1A protein in presynaptic boutons completely blocked this effect of propofol. Overexpressing wild-type syntaxin1A in boutons also conferred a level of resistance by increasing the number of active release sites to a physiological ceiling set by the number of active zones or T-bars, and in this way counteracting the effect of propofol. These results point to the presynaptic release machinery as a target for the general anesthetic. Proportionally equivalent effects of propofol on the number of active release sites across the different bouton types suggests that glutamatergic circuits that involve smaller boutons with fewer release sites may be more vulnerable to the presynaptic effects of the drug.
Collapse
|