1
|
Weber DK, Reddy UV, Wang S, Larsen EK, Gopinath T, Gustavsson MB, Cornea RL, Thomas DD, De Simone A, Veglia G. Structural basis for allosteric control of the SERCA-Phospholamban membrane complex by Ca 2+ and phosphorylation. eLife 2021; 10:e66226. [PMID: 33978571 PMCID: PMC8184213 DOI: 10.7554/elife.66226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/10/2021] [Indexed: 01/26/2023] Open
Abstract
Phospholamban (PLN) is a mini-membrane protein that directly controls the cardiac Ca2+-transport response to β-adrenergic stimulation, thus modulating cardiac output during the fight-or-flight response. In the sarcoplasmic reticulum membrane, PLN binds to the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA), keeping this enzyme's function within a narrow physiological window. PLN phosphorylation by cAMP-dependent protein kinase A or increase in Ca2+ concentration reverses the inhibitory effects through an unknown mechanism. Using oriented-sample solid-state NMR spectroscopy and replica-averaged NMR-restrained structural refinement, we reveal that phosphorylation of PLN's cytoplasmic regulatory domain signals the disruption of several inhibitory contacts at the transmembrane binding interface of the SERCA-PLN complex that are propagated to the enzyme's active site, augmenting Ca2+ transport. Our findings address long-standing questions about SERCA regulation, epitomizing a signal transduction mechanism operated by posttranslationally modified bitopic membrane proteins.
Collapse
Affiliation(s)
- Daniel K Weber
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - U Venkateswara Reddy
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Songlin Wang
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Erik K Larsen
- Department of Chemistry, University of MinnesotaMinneapolisUnited States
| | - Tata Gopinath
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Martin B Gustavsson
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - David D Thomas
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South KensingtonLondonUnited Kingdom
- Department of Pharmacy, University of Naples 'Federico II'NaplesItaly
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology and Biophysics, University of MinnesotaMinneapolisUnited States
- Department of Chemistry, University of MinnesotaMinneapolisUnited States
| |
Collapse
|
2
|
Addison B, Stengel D, Bharadwaj VS, Happs RM, Doeppke C, Wang T, Bomble YJ, Holland GP, Harman-Ware AE. Selective One-Dimensional 13C- 13C Spin-Diffusion Solid-State Nuclear Magnetic Resonance Methods to Probe Spatial Arrangements in Biopolymers Including Plant Cell Walls, Peptides, and Spider Silk. J Phys Chem B 2020; 124:9870-9883. [PMID: 33091304 DOI: 10.1021/acs.jpcb.0c07759] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Two-dimensional (2D) and 3D through-space 13C-13C homonuclear spin-diffusion techniques are powerful solid-state nuclear magnetic resonance (NMR) tools for extracting structural information from 13C-enriched biomolecules, but necessarily long acquisition times restrict their applications. In this work, we explore the broad utility and underutilized power of a chemical shift-selective one-dimensional (1D) version of a 2D 13C-13C spin-diffusion solid-state NMR technique. The method, which is called 1D dipolar-assisted rotational resonance (DARR) difference, is applied to a variety of biomaterials including lignocellulosic plant cell walls, microcrystalline peptide fMLF, and black widow dragline spider silk. 1D 13C-13C spin-diffusion methods described here apply in select cases in which the 1D 13C solid-state NMR spectrum displays chemical shift-resolved moieties. This is analogous to the selective 1D nuclear Overhauser effect spectroscopy (NOESY) experiment utilized in liquid-state NMR as a faster (1D instead of 2D) and often less ambiguous (direct sampling of the time domain data, coupled with increased signal averaging) alternative to 2D NOESY. Selective 1D 13C-13C spin-diffusion methods are more time-efficient than their 2D counterparts such as proton-driven spin diffusion (PDSD) and dipolar-assisted rotational resonance. The additional time gained enables measurements of 13C-13C spin-diffusion buildup curves and extraction of spin-diffusion time constants TSD, yielding detailed structural information. Specifically, selective 1D DARR difference buildup curves applied to 13C-enriched hybrid poplar woody stems confirm strong spatial interaction between lignin and acetylated xylan polymers within poplar plant secondary cell walls, and an interpolymer distance of ∼0.45-0.5 nm was estimated. Additionally, Tyr/Gly long-range correlations were observed on isotopically enriched black widow spider dragline silks.
Collapse
Affiliation(s)
- Bennett Addison
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Dillan Stengel
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Vivek S Bharadwaj
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Renee M Happs
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Crissa Doeppke
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Tuo Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Yannick J Bomble
- Biosciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, United States
| | - Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|