1
|
Yuan Y, Liu J, Feng RR, Zhang W, Gai F. Photophysics of Two Indole-Based Cyan Fluorophores. J Phys Chem B 2023; 127:4508-4513. [PMID: 37171997 DOI: 10.1021/acs.jpcb.3c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
For the purpose of searching for new biological fluorophore, we assess the photophysical properties of two indole derivatives, 4-cyano-7-azaindole (4CN7AI) and 1-methyl-4-cyano-7-azaindole (1M4CN7AI), in a series of solvents. We find that (1) the absorption spectra of both derivatives are insensitive to solvents and are red-shifted from that of indole, having a maximum absorption wavelength of ca. 318 nm and a broad profile that extends beyond 370 nm; (2) both derivatives emit in the blue to green spectral range with a large Stokes shift, for example, in H2O, the maximum emission wavelength of 4CN7AI (1M4CN7AI) is at ca. 455 nm (470 nm); (3) 4CN7AI has a higher fluorescence quantum yield (QY) and a longer fluorescence lifetime (τF) in aprotic solvents than in protic solvents, for example, QY (τF) = 0.72 ± 0.04 (7.6 ± 0.8 ns) in tetrahydrofuran and QY (τF) = 0.29 ± 0.03 (6.2 ± 0.6 ns) in H2O; (4) in all of the solvents used except H2O, the fluorescence QY (τF) of 1M4CN7AI is equal to or higher (longer) than 0.69 ± 0.03 (11.2 ± 0.7 ns). Taken together, these results suggest that the corresponding non-natural amino acids, 4-cyano-7-azatryptophan and 1-methyl-4-cyano-7-azatryptophan, could be useful as biological fluorophores.
Collapse
Affiliation(s)
- Yu Yuan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jingsong Liu
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Ran-Ran Feng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Micikas RJ, Acharyya A, Smith AB, Gai F. Synthesis and characterization of the fluorescence utility of two Visible-Light-Absorbing tryptophan derivatives. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
3
|
Fong KP, Ahmed IA, Mravic M, Jo H, Kim OV, Litvinov RI, Weisel JW, DeGrado WF, Gai F, Bennett JS. Visualization of Platelet Integrins via Two-Photon Microscopy Using Anti-transmembrane Domain Peptides Containing a Blue Fluorescent Amino Acid. Biochemistry 2021; 60:1722-1730. [PMID: 34010565 DOI: 10.1021/acs.biochem.1c00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The fluorescent reporters commonly used to visualize proteins can perturb both protein structure and function. Recently, we found that 4-cyanotryptophan (4CN-Trp), a blue fluorescent amino acid, is suitable for one-photon imaging applications. Here, we demonstrate its utility in two-photon fluorescence microscopy by using it to image integrins on cell surfaces. Specifically, we used solid-phase peptide synthesis to generate CHAMP peptides labeled with 4-cyanoindole (4CNI) at their N-termini to image integrins on cell surfaces. CHAMP (computed helical anti-membrane protein) peptides spontaneously insert into membrane bilayers to target integrin transmembrane domains and cause integrin activation. We found that 4CNI labeling did not perturb the ability of CHAMP peptides to insert into membranes, bind to integrins, or cause integrin activation. We then used two-photon fluorescence microscopy to image 4CNI-containing integrins on the surface of platelets. Compared to a 4CNI-labeled scrambled peptide that uniformly decorated cell surfaces, 4CNI-labeled CHAMP peptides were present in discrete blue foci. To confirm that these foci represented CN peptide-containing integrins, we co-stained platelets with integrin-specific fluorescent monoclonal antibodies and found that CN peptide and antibody fluorescence coincided. Because 4CNI can readily be biosynthetically incorporated into proteins with little if any effect on protein structure and function, it provides a facile way to directly monitor protein behavior and protein-protein interactions in cellular environments. In addition, these results clearly demonstrate that the two-photon excitation cross section of 4CN-Trp is sufficiently large to make it a useful two-photon fluorescence reporter for biological applications.
Collapse
Affiliation(s)
- Karen P Fong
- Hematology-Oncology Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ismail A Ahmed
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Marco Mravic
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158-2517, United States
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158-2517, United States
| | - Oleg V Kim
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - William F DeGrado
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158-2517, United States
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Joel S Bennett
- Hematology-Oncology Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Acharyya A, Zhang W, Gai F. Tryptophan as a Template for Development of Visible Fluorescent Amino Acids. J Phys Chem B 2021; 125:5458-5465. [PMID: 34029101 DOI: 10.1021/acs.jpcb.1c02321] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Most biological systems, at both molecular and cellular levels, are intrinsically complex, diverse, and nonfluorescent. Therefore, studying their structures, dynamics, and interactions via fluorescence-based methods requires incorporation of one or multiple external fluorophores that would not significantly affect any native property of the system in question. This requirement necessitates the development of a diverse set of fluorescence reporters that differ in chemical, physical, and photophysical properties. Herein, we offer our perspective on the need for, recent progress in, and future directions of developing tryptophan-based fluorescent amino acids.
Collapse
Affiliation(s)
- Arusha Acharyya
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing 100875, China
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Hebestreit ML, Lartian H, Henrichs C, Kühnemuth R, Meerts WL, Schmitt M. Excited state dipole moments and lifetimes of 2-cyanoindole from rotationally resolved electronic Stark spectroscopy. Phys Chem Chem Phys 2021; 23:10196-10204. [PMID: 33951126 DOI: 10.1039/d1cp00097g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The permanent dipole moments of 2-cyanoindole (cyanoindole = CNI) in its ground and lowest excited singlet states have been determined from rotationally resolved electronic Stark spectroscopy under jet-cooled conditions. From the orientation of the transition dipole moment and the geometry changes upon electronic excitation the lowest excited singlet state could be shown to be of Lb-symmetry. The general statement, that the La-state has the larger permanent dipole moment of the two lowest excited singlet states, will be challenged in this contribution. On the basis of the different electronic nature of the first excited singlet state the behavior of 2-, 3-, 4- and 5-CNI is discussed. The excited state lifetime of isolated 2-CNI in the gas phase has been determined to be 9.4 ns. This value is compared to the excited state lifetime in ethyl acetate solution of 2.6 ns, which was quantified with a Strickler-Berg analysis. Using water as solvent shortens the 2-CNI lifetime to <40 ps. The reason for this drastic shortening is discussed in detail. Additionally, the rotationally resolved electronic spectrum of 2-CNI(1-d1) has been measured and analyzed.
Collapse
Affiliation(s)
- Marie-Luise Hebestreit
- Heinrich-Heine-Universität, Institut für Physikalische Chemie I, D-40225 Düsseldorf, Germany.
| | | | | | | | | | | |
Collapse
|
6
|
Micikas RJ, Ahmed IA, Acharyya A, Smith AB, Gai F. Tuning the electronic transition energy of indole via substitution: application to identify tryptophan-based chromophores that absorb and emit visible light. Phys Chem Chem Phys 2021; 23:6433-6437. [PMID: 33710175 DOI: 10.1039/d0cp06710e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Fluorescent amino acids (FAAs) offer significant advantages over fluorescent proteins in applications where the fluorophore size needs to be limited or minimized. A long-sought goal in biological spectroscopy/microcopy is to develop visible FAAs by modifying the indole ring of tryptophan. Herein, we examine the absorption spectra of a library of 4-substituted indoles and find that the frequency of the absorption maximum correlates linearly with the global electrophilicity index of the substituent. This finding permits us to identify two promising candidates, 4-formyltryptophan (4CHO-Trp) and 4-nitrotryptophan (4NO2-Trp), both of which can be excited by visible light. Further fluorescence measurements indicate that while 4CHO-indole (and 4CHO-Trp) emits cyan fluorescence with a reasonably large quantum yield (ca. 0.22 in ethanol), 4NO2-indole is essentially non-fluorescent, suggesting that 4CHO-Trp (4NO2-Trp) could be useful as a fluorescence reporter (quencher). In addition, we present a simple method for synthesizing 4CHO-Trp.
Collapse
Affiliation(s)
- Robert J Micikas
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | |
Collapse
|