1
|
Jordanova A, Tsanova A, Stoimenova E, Minkov I, Kostadinova A, Hazarosova R, Angelova R, Antonova K, Vitkova V, Staneva G, Grabchev I. Molecular Mechanisms of Action of Dendrimers with Antibacterial Activities on Model Lipid Membranes. Polymers (Basel) 2025; 17:929. [PMID: 40219317 PMCID: PMC11991017 DOI: 10.3390/polym17070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
In the last decades, numerous dendrimers with a variety of potential biomedical applications have been developed and investigated. The aim of the present study was to evaluate the molecular mechanisms of interaction between two dendrimers with proven antibacterial activity (4-N,N-dimethylamino-1,8-naphthalimide (Dab) and 3-bromo-Dab (Dab-Br)) and POPC (1-palmitoyl-2-oleoylphosphatidylcholine) model membranes (monolayers and liposomes). The pressure-area isotherms and the compressional modulus of the monolayers revealed that Dab is likely to penetrate the hydrophobic region of POPC, whereas Dab-Br inserts mainly into the lipid headgroup area. This assumption was confirmed by FTIR-ATR of POPC liposomes containing Dab and Dab-Br dendrimers. In addition, Dab induced a higher lipid order in POPC large unilamellar vesicles (LUVs) compared to Dab-Br. Moreover, both dendrimers changed the negative zeta potential of POPC vesicles to positive values, with slightly higher effect of Dab-Br, indicating electrostatic interactions between the lipid headgroups and dendrimers. Furthermore, Dab was able to reduce the average POPC LUVs' size, unlike Dab-Br. The visualization of giant unilamellar vesicles revealed that the increasing dendrimer concentration induced model membrane shrinking and complete disintegration, which was more prominent for Dab. Based on the experimental results, new fundamental knowledge about the destabilizing effect of dendrimers on model lipid membranes will be acquired with a focus on their application in pharmacology and clinical practice.
Collapse
Affiliation(s)
- Albena Jordanova
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1 Koziak Street, 1407 Sofia, Bulgaria; (A.T.); (E.S.); (I.M.); (I.G.)
| | - Asya Tsanova
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1 Koziak Street, 1407 Sofia, Bulgaria; (A.T.); (E.S.); (I.M.); (I.G.)
| | - Emilia Stoimenova
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1 Koziak Street, 1407 Sofia, Bulgaria; (A.T.); (E.S.); (I.M.); (I.G.)
| | - Ivan Minkov
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1 Koziak Street, 1407 Sofia, Bulgaria; (A.T.); (E.S.); (I.M.); (I.G.)
- Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 11, 1113 Sofia, Bulgaria
| | - Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (A.K.); (R.H.); (R.A.)
| | - Rusina Hazarosova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (A.K.); (R.H.); (R.A.)
| | - Ralitsa Angelova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (A.K.); (R.H.); (R.A.)
| | - Krassimira Antonova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose Blvd., 1784 Sofia, Bulgaria; (K.A.)
| | - Victoria Vitkova
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose Blvd., 1784 Sofia, Bulgaria; (K.A.)
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (A.K.); (R.H.); (R.A.)
| | - Ivo Grabchev
- Faculty of Medicine, Sofia University “St. Kliment Ohridski”, 1 Koziak Street, 1407 Sofia, Bulgaria; (A.T.); (E.S.); (I.M.); (I.G.)
| |
Collapse
|
2
|
Filipiuc SI, Simionescu N, Stanciu GD, Coroaba A, Marangoci NL, Filipiuc LE, Pinteala M, Uritu CM, Tamba BI. Fluorescent Rhein-Loaded Liposomes for In Vivo Biodistribution Study. Pharmaceutics 2025; 17:307. [PMID: 40142971 PMCID: PMC11944368 DOI: 10.3390/pharmaceutics17030307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Objectives: This work aimed to develop and investigate liposomes incorporating Rhein (Lip-Rh) into the liposomal membrane to enhance the compound's water solubility and oral bioavailability. Methods: Liposomes were produced by the thin lipid film technique, with a phosphatidylcholine-to-cholesterol molar ratio of 5:1, dissolved in chloroform and methanol, and thereafter hydrated with ultrapure water and subjected to sonication. The resultant liposomes were studied from a physicochemical perspective using DLS, zeta potential, STEM, UV-Vis, and fluorescence spectroscopies, while oral bioavailability was assessed by fluorescence imaging. Additionally, cell viability assays were performed on tumour cells (MCF-7) in comparison to normal cells (HGFs). Results: The resultant nanoparticles exhibited relatively uniform sizes and narrow size distribution. In vivo fluorescence imaging studies performed on Wistar rats demonstrated significantly enhanced oral bioavailability for Lip-Rh, with rapid absorption into the bloodstream observed one hour after administration, in contrast to the free compound dissolved in vegetable oil. Cell viability assays demonstrated higher cytotoxicity of Lip-Rh towards MCF-7 cells compared to HGF cells, highlighting the selective therapeutic potential of the product. Moreover, we determined that the optimal dose of Rhein per kilogram of body weight, when encapsulated in liposomes, is approximately 2.5 times less than when Rhein is delivered in its unencapsulated form. Conclusions: Lip-Rh is a promising candidate for oncological treatments, presenting three key advantages: increased cytotoxicity towards tumour cells, protection of normal tissues, and the practicality of oral delivery. Additional investigation is required to explore its application in anticancer therapy, whether as monotherapy or as a complementary treatment.
Collapse
Affiliation(s)
- Silviu Iulian Filipiuc
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (S.I.F.); (N.S.); (A.C.); (N.L.M.); (M.P.)
- Advanced Center for Research and Development in Experimental Medicine “Prof. Ostin C. Mungiu”, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (L.E.F.); (B.I.T.)
| | - Natalia Simionescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (S.I.F.); (N.S.); (A.C.); (N.L.M.); (M.P.)
| | - Gabriela Dumitrița Stanciu
- Advanced Center for Research and Development in Experimental Medicine “Prof. Ostin C. Mungiu”, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (L.E.F.); (B.I.T.)
| | - Adina Coroaba
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (S.I.F.); (N.S.); (A.C.); (N.L.M.); (M.P.)
| | - Narcisa Laura Marangoci
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (S.I.F.); (N.S.); (A.C.); (N.L.M.); (M.P.)
| | - Leontina Elena Filipiuc
- Advanced Center for Research and Development in Experimental Medicine “Prof. Ostin C. Mungiu”, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (L.E.F.); (B.I.T.)
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (S.I.F.); (N.S.); (A.C.); (N.L.M.); (M.P.)
| | - Cristina Mariana Uritu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania; (S.I.F.); (N.S.); (A.C.); (N.L.M.); (M.P.)
- Advanced Center for Research and Development in Experimental Medicine “Prof. Ostin C. Mungiu”, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (L.E.F.); (B.I.T.)
| | - Bogdan Ionel Tamba
- Advanced Center for Research and Development in Experimental Medicine “Prof. Ostin C. Mungiu”, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania; (G.D.S.); (L.E.F.); (B.I.T.)
| |
Collapse
|
3
|
Snoj T, Lukan T, Gruden K, Anderluh G. Interaction of an Oomycete Nep1-like Cytolysin with Natural and Plant Cell-Mimicking Membranes. J Membr Biol 2024:10.1007/s00232-024-00330-3. [PMID: 39692881 DOI: 10.1007/s00232-024-00330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/30/2024] [Indexed: 12/19/2024]
Abstract
Plants are attacked by various pathogens that secrete a variety of effectors to damage host cells and facilitate infection. One of the largest and so far understudied microbial protein families of effectors is necrosis- and ethylene-inducing peptide-1-like proteins (NLPs), which are involved in important plant diseases. Many NLPs act as cytolytic toxins that cause cell death and tissue necrosis by disrupting the plant's plasma membrane. Their mechanism of action is unique and leads to the formation of small, transient membrane ruptures. Here, we capture the interaction of the cytotoxic model NLP from the oomycete Pythium aphanidermatum, NLPPya, with plant cell-mimicking membranes of giant unilamellar vesicles (GUVs) and tobacco protoplasts using confocal fluorescence microscopy. We show that the permeabilization of GUVs by NLPPya is concentration- and time-dependent, confirm the small size of the pores by observing the inability of NLPPya monomers to pass through them, image the morphological changes of GUVs at higher concentrations of NLPPya and confirm its oligomerization on the membrane of GUVs. In addition, NLPPya bound to plasma membranes of protoplasts, which showed varying responses. Our results provide new insights into the interaction of NLPPya with model lipid membranes containing plant-derived sphingolipids.
Collapse
Affiliation(s)
- Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia
- Graduate School of Biosciences, Biotehnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tjaša Lukan
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Kristina Gruden
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000, Ljubljana, Slovenia.
| |
Collapse
|
4
|
Monck C, Elani Y, Ceroni F. Genetically programmed synthetic cells for thermo-responsive protein synthesis and cargo release. Nat Chem Biol 2024; 20:1380-1386. [PMID: 38969863 PMCID: PMC11427347 DOI: 10.1038/s41589-024-01673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/06/2024] [Indexed: 07/07/2024]
Abstract
Synthetic cells containing genetic programs and protein expression machinery are increasingly recognized as powerful counterparts to engineered living cells in the context of biotechnology, therapeutics and cellular modelling. So far, genetic regulation of synthetic cell activity has been largely confined to chemical stimuli; to unlock their potential in applied settings, engineering stimuli-responsive synthetic cells under genetic regulation is imperative. Here we report the development of temperature-sensitive synthetic cells that control protein production by exploiting heat-responsive mRNA elements. This is achieved by combining RNA thermometer technology, cell-free protein expression and vesicle-based synthetic cell design to create cell-sized capsules able to initiate synthesis of both soluble proteins and membrane proteins at defined temperatures. We show that the latter allows for temperature-controlled cargo release phenomena with potential implications for biomedicine. Platforms like the one presented here can pave the way for customizable, genetically programmed synthetic cells under thermal control to be used in biotechnology.
Collapse
Affiliation(s)
- Carolina Monck
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, London, UK
- fabriCELL, Imperial College London, London, UK
| | - Yuval Elani
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
- fabriCELL, Imperial College London, London, UK.
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, London, UK.
| |
Collapse
|
5
|
Vladisaljević GT. Droplet Microfluidics for High-Throughput Screening and Directed Evolution of Biomolecules. MICROMACHINES 2024; 15:971. [PMID: 39203623 PMCID: PMC11356158 DOI: 10.3390/mi15080971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024]
Abstract
Directed evolution is a powerful technique for creating biomolecules such as proteins and nucleic acids with tailor-made properties for therapeutic and industrial applications by mimicking the natural evolution processes in the laboratory. Droplet microfluidics improved classical directed evolution by enabling time-consuming and laborious steps in this iterative process to be performed within monodispersed droplets in a highly controlled and automated manner. Droplet microfluidic chips can generate, manipulate, and sort individual droplets at kilohertz rates in a user-defined microchannel geometry, allowing new strategies for high-throughput screening and evolution of biomolecules. In this review, we discuss directed evolution studies in which droplet-based microfluidic systems were used to screen and improve the functional properties of biomolecules. We provide a systematic overview of basic on-chip fluidic operations, including reagent mixing by merging continuous fluid streams and droplet pairs, reagent addition by picoinjection, droplet generation, droplet incubation in delay lines, chambers and hydrodynamic traps, and droplet sorting techniques. Various microfluidic strategies for directed evolution using single and multiple emulsions and biomimetic materials (giant lipid vesicles, microgels, and microcapsules) are highlighted. Completely cell-free microfluidic-assisted in vitro compartmentalization methods that eliminate the need to clone DNA into cells after each round of mutagenesis are also presented.
Collapse
Affiliation(s)
- Goran T Vladisaljević
- Department of Chemical Engineering, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|
6
|
Pramanik S, Steinkühler J, Dimova R, Spatz J, Lipowsky R. Binding of His-tagged fluorophores to lipid bilayers of giant vesicles. SOFT MATTER 2022; 18:6372-6383. [PMID: 35975692 DOI: 10.1039/d2sm00915c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
His-tagged molecules can be attached to lipid bilayers via certain anchor lipids, a method that has been widely used for the biofunctionalization of membranes and vesicles. To observe the membrane-bound molecules, it is useful to consider His-tagged molecules that are fluorescent as well. Here, we study two such molecules, green fluorescence protein (GFP) and green-fluorescent fluorescein isothiocyanate (FITC), both of which are tagged with a chain of six histidines (6H) that bind to the anchor lipids within the bilayers. The His-tag 6H is much smaller than the GFP molecule but somewhat larger than the FITC dye. The lipid bilayers form giant unilamellar vesicles (GUVs), the behavior of which can be directly observed in the optical microscope. We apply and compare three well-established preparation methods for GUVs: electroformation on platinum wire, polyvinyl alcohol (PVA) hydrogel swelling, and electroformation on indium tin oxide (ITO) glass. Microfluidics is used to expose the GUVs to a constant fluorophore concentration in the exterior solution. The brightness of membrane-bound 6H-GFP exceeds the brightness of membrane-bound 6H-FITC, in contrast to the quantum yields of the two fluorophores in solution. In fact, 6H-FITC is observed to be strongly quenched by the anchor lipids which bind the fluorophores via Ni2+ ions. For both 6H-GFP and 6H-FITC, the membrane fluorescence is measured as a function of the fluorophores' molar concentration. The theoretical analysis of these data leads to the equilibrium dissociation constants Kd = 37.5 nM for 6H-GFP and Kd = 18.5 nM for 6H-FITC. We also observe a strong pH-dependence of the membrane fluorescence.
Collapse
Affiliation(s)
- Shreya Pramanik
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Jan Steinkühler
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | - Joachim Spatz
- Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| |
Collapse
|
7
|
Mathiassen PPM, Pomorski TG. A Fluorescence-based Assay for Measuring Phospholipid Scramblase Activity in Giant Unilamellar Vesicles. Bio Protoc 2022; 12:e4366. [PMID: 35434199 PMCID: PMC8983165 DOI: 10.21769/bioprotoc.4366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 11/09/2021] [Accepted: 03/01/2022] [Indexed: 07/28/2023] Open
Abstract
Transbilayer movement of phospholipids in biological membranes is mediated by a diverse set of lipid transporters. Among them are scramblases that facilitate rapid bi-directional movement of lipids without metabolic energy input. In this protocol, we describe the incorporation of phospholipid scramblases into giant unilamellar vesicles (GUVs) formed from scramblase-containing large unilamellar vesicles by electroformation. We also describe how to analyze their activity using membrane-impermeant sodium dithionite, to bleach symmetrically incorporated fluorescent ATTO488-conjugated phospholipids. The fluorescence-based readout allows single vesicle tracking for a large number of settled/immobilized GUVs, and provides a well-defined experimental setup to directly characterize these lipid transporters at the molecular level. Graphic abstract: Giant unilamellar vesicles (GUVs) are formed by electroformation from large unilamellar vesicles (LUVs) containing phospholipid scramblases (purple) and trace amounts of a fluorescent lipid reporter (green). The scramblase activity is analyzed by a fluorescence-based assay of single GUVs, using the membrane-impermeant quencher dithionite. Sizes not to scale. Modified from Mathiassen et al. (2021).
Collapse
Affiliation(s)
- Patricia P. M. Mathiassen
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780, Bochum, Germany
| | - Thomas Günther Pomorski
- Department of Molecular Biochemistry, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780, Bochum, Germany
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| |
Collapse
|
8
|
Endoplasmic reticulum phospholipid scramblase activity revealed after protein reconstitution into giant unilamellar vesicles containing a photostable lipid reporter. Sci Rep 2021; 11:14364. [PMID: 34257324 PMCID: PMC8277826 DOI: 10.1038/s41598-021-93664-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/28/2021] [Indexed: 02/04/2023] Open
Abstract
Transbilayer movement of phospholipids in biological membranes is mediated by a diverse set of lipid transporters. Among them are scramblases that facilitate a rapid bi-directional movement of lipids without metabolic energy input. Here, we established a new fluorescence microscopy-based assay for detecting phospholipid scramblase activity of membrane proteins upon their reconstitution into giant unilamellar vesicles formed from proteoliposomes by electroformation. The assay is based on chemical bleaching of fluorescence of a photostable ATTO-dye labeled phospholipid with the membrane-impermeant reductant sodium dithionite. We demonstrate that this new methodology is suitable for the study of the scramblase activity of the yeast endoplasmic reticulum at single vesicle level.
Collapse
|