1
|
Nygaard A, Zachariassen LG, Larsen KS, Kristensen AS, Loland CJ. Fluorescent non-canonical amino acid provides insight into the human serotonin transporter. Nat Commun 2024; 15:9267. [PMID: 39463388 PMCID: PMC11514162 DOI: 10.1038/s41467-024-53584-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
The serotonin transporter (SERT), responsible for the reuptake of released serotonin, serves as a major target for antidepressants and psychostimulants. Nevertheless, refining the mechanistic models for SERT remains challenging. Here, we expand the molecular understanding of the binding of ions, substrates, and inhibitors to SERT by incorporating the fluorescent non-canonical amino acid Anap through genetic code expansion. We elucidate steady-state changes in conformational dynamics of purified SERT with Anap inserted at intracellular- or extracellular sites. This uncovers the competitive mechanisms underlying cation binding and assigns distinct binding- and allosteric coupling patterns for several inhibitors and substrates. Finally, we track in real-time conformational transitions in response to the interaction with Na+ or serotonin. In this work, we present a methodological platform reporting on SERT conformational dynamics, which together with other approaches will deepen our insights into the molecular mechanisms of SERT.
Collapse
Affiliation(s)
- Andreas Nygaard
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Linda G Zachariassen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine S Larsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Anders S Kristensen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Claus J Loland
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Söllner J, Derler I. Genetic code expansion, an emerging tool in the Ca 2+ ion channel field. J Physiol 2024; 602:3297-3313. [PMID: 38695316 DOI: 10.1113/jp285840] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/15/2024] [Indexed: 07/17/2024] Open
Abstract
Various methods for characterizing binding forces as well as for monitoring and remote control of ion channels are still emerging. A recent innovation is the direct incorporation of unnatural amino acids (UAAs) with corresponding biophysical or biochemical properties, which are integrated using genetic code expansion technology. Minimal changes to natural amino acids, which are achieved by chemical synthesis of corresponding UAAs, are valuable tools to provide insight into the contributions of physicochemical properties of side chains in binding events. To gain unique control over the conformational changes or function of ion channels, a series of light-sensitive, chemically reactive and posttranslationally modified UAAs have been developed and utilized. Here, we present the existing UAA tools, their mode of action, their potential and limitations as well as their previous applications to Ca2+-permeable ion channels.
Collapse
Affiliation(s)
- Julia Söllner
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, Linz, Austria
| |
Collapse
|
3
|
Bacsa B, Hopl V, Derler I. Synthetic Biology Meets Ca 2+ Release-Activated Ca 2+ Channel-Dependent Immunomodulation. Cells 2024; 13:468. [PMID: 38534312 PMCID: PMC10968988 DOI: 10.3390/cells13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
Collapse
Affiliation(s)
- Bernadett Bacsa
- Division of Medical Physics und Biophysics, Medical University of Graz, A-8010 Graz, Austria;
| | - Valentina Hopl
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| | - Isabella Derler
- Institute of Biophysics, JKU Life Science Center, Johannes Kepler University Linz, A-4020 Linz, Austria;
| |
Collapse
|
4
|
Allert MJ, Kumar S, Wang Y, Beese LS, Hellinga HW. Chromophore carbonyl twisting in fluorescent biosensors encodes direct readout of protein conformations with multicolor switching. Commun Chem 2023; 6:168. [PMID: 37598249 PMCID: PMC10439942 DOI: 10.1038/s42004-023-00982-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023] Open
Abstract
Fluorescent labeling of proteins is a powerful tool for probing structure-function relationships with many biosensing applications. Structure-based rules for systematically designing fluorescent biosensors require understanding ligand-mediated fluorescent response mechanisms which can be challenging to establish. We installed thiol-reactive derivatives of the naphthalene-based fluorophore Prodan into bacterial periplasmic glucose-binding proteins. Glucose binding elicited paired color exchanges in the excited and ground states of these conjugates. X-ray structures and mutagenesis studies established that glucose-mediated color switching arises from steric interactions that couple protein conformational changes to twisting of the Prodan carbonyl relative to its naphthalene plane. Mutations of residues contacting the carbonyl can optimize color switching by altering fluorophore conformational equilibria in the apo and glucose-bound proteins. A commonly accepted view is that Prodan derivatives report on protein conformations via solvatochromic effects due to changes in the dielectric of their local environment. Here we show that instead Prodan carbonyl twisting controls color switching. These insights enable structure-based biosensor design by coupling ligand-mediated protein conformational changes to internal chromophore twists through specific steric interactions between fluorophore and protein.
Collapse
Affiliation(s)
- Malin J Allert
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Shivesh Kumar
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - You Wang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Lorena S Beese
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA
| | - Homme W Hellinga
- Department of Biochemistry, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
5
|
Suárez-Delgado E, Orozco-Contreras M, Rangel-Yescas GE, Islas LD. Activation-pathway transitions in human voltage-gated proton channels revealed by a non-canonical fluorescent amino acid. eLife 2023; 12:85836. [PMID: 36695566 PMCID: PMC9925047 DOI: 10.7554/elife.85836] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Voltage-dependent gating of the voltage-gated proton channels (HV1) remains poorly understood, partly because of the difficulty of obtaining direct measurements of voltage sensor movement in the form of gating currents. To circumvent this problem, we have implemented patch-clamp fluorometry in combination with the incorporation of the fluorescent non-canonical amino acid Anap to monitor channel opening and movement of the S4 segment. Simultaneous recording of currents and fluorescence signals allows for direct correlation of these parameters and investigation of their dependence on voltage and the pH gradient (ΔpH). We present data that indicate that Anap incorporated in the S4 helix is quenched by an aromatic residue located in the S2 helix and that motion of the S4 relative to this quencher is responsible for fluorescence increases upon depolarization. The kinetics of the fluorescence signal reveal the existence of a very slow transition in the deactivation pathway, which seems to be singularly regulated by ΔpH. Our experiments also suggest that the voltage sensor can move after channel opening and that the absolute value of the pH can influence the channel opening step. These results shed light on the complexities of voltage-dependent opening of human HV1 channels.
Collapse
Affiliation(s)
- Esteban Suárez-Delgado
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México, México City, Mexico
| | - Maru Orozco-Contreras
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México, México City, Mexico
| | - Gisela E Rangel-Yescas
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México, México City, Mexico
| | - Leon D Islas
- Department of Physiology, School of Medicine, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
6
|
Cheng WWL, Arcario MJ, Petroff JT. Druggable Lipid Binding Sites in Pentameric Ligand-Gated Ion Channels and Transient Receptor Potential Channels. Front Physiol 2022; 12:798102. [PMID: 35069257 PMCID: PMC8777383 DOI: 10.3389/fphys.2021.798102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Lipids modulate the function of many ion channels, possibly through direct lipid-protein interactions. The recent outpouring of ion channel structures by cryo-EM has revealed many lipid binding sites. Whether these sites mediate lipid modulation of ion channel function is not firmly established in most cases. However, it is intriguing that many of these lipid binding sites are also known sites for other allosteric modulators or drugs, supporting the notion that lipids act as endogenous allosteric modulators through these sites. Here, we review such lipid-drug binding sites, focusing on pentameric ligand-gated ion channels and transient receptor potential channels. Notable examples include sites for phospholipids and sterols that are shared by anesthetics and vanilloids. We discuss some implications of lipid binding at these sites including the possibility that lipids can alter drug potency or that understanding protein-lipid interactions can guide drug design. Structures are only the first step toward understanding the mechanism of lipid modulation at these sites. Looking forward, we identify knowledge gaps in the field and approaches to address them. These include defining the effects of lipids on channel function in reconstituted systems using asymmetric membranes and measuring lipid binding affinities at specific sites using native mass spectrometry, fluorescence binding assays, and computational approaches.
Collapse
Affiliation(s)
- Wayland W L Cheng
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - Mark J Arcario
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| | - John T Petroff
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
7
|
Aphicho K, Kittipanukul N, Uttamapinant C. Visualizing the complexity of proteins in living cells with genetic code expansion. Curr Opin Chem Biol 2022; 66:102108. [PMID: 35026612 DOI: 10.1016/j.cbpa.2021.102108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022]
Abstract
Genetic code expansion has emerged as an enabling tool to provide insight into functions of understudied proteinogenic species, such as small proteins and peptides, and to probe protein biophysics in the cellular context. Here, we discuss recent technical advances and applications of genetic code expansion in cellular imaging of complex mammalian protein species, along with considerations and challenges on using the method.
Collapse
Affiliation(s)
- Kanokpol Aphicho
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Narongyot Kittipanukul
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|