1
|
Kukovetz K, Cartolano M, Gebhardt M, Schumann LE, Kast SM, Moroni A, Thiel G, Rauh O. Yeast complementation assays provide limited information on functional features of K + channels. BIOPHYSICAL REPORTS 2025; 5:100206. [PMID: 40086750 PMCID: PMC11985088 DOI: 10.1016/j.bpr.2025.100206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/16/2025]
Abstract
We investigate to what extent yeast complementation assays, which in principle can provide large amounts of training data for machine-learning models, yield quantitative correlations between growth rescue and single-channel recordings. If this were the case, yeast complementation results could be used as surrogate data for machine-learning-based channel design. Therefore, we mutated position L94 at the cavity entry of the model K+ channel KcvPBCV1 to all proteinogenic amino acids. The function of the wild-type channel and its mutants was investigated by reconstituting them in planar lipid bilayers and by their ability to rescue the growth of a yeast strain deficient in K+ uptake. The single-channel data show a distinct effect of mutations in this critical position on unitary conductance and open probability, with no apparent causal relationship between the two functional parameters. We also found that even conservative amino acid replacements can alter the unitary conductance and/or open probability and that most functional changes show no systematic relationship with the physicochemical nature of the amino acids. This emphasizes that the functional influence of an amino acid on channel function cannot be reduced to a single chemical property. Mutual comparison of single-channel data and yeast complementation results exhibit only a partial correlation between their electrical parameters and their potency of rescuing growth. Hence, complementation data alone are not sufficient for enabling functional channel design; they need to be complemented by additional parameters such as the number of channels in the plasma membrane.
Collapse
Affiliation(s)
| | | | | | - Lars E Schumann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Stefan M Kast
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Gerhard Thiel
- Department of Biology, TU Darmstadt, Darmstadt, Germany; Department of Biosciences and CNR IBF-Mi, Università degli Studi di Milano, Milano, Italy
| | - Oliver Rauh
- Department of Biology, TU Darmstadt, Darmstadt, Germany; Institute for Functional Gene Analytics, Department of Natural Sciences, Bonn-Rhein-Sieg University of Applied Sciences, Rheinbach, Germany.
| |
Collapse
|
2
|
Tewes N, Kubitzki B, Bytyqi F, Metko N, Mach S, Thiel G, Rauh O. Mutation in pore-helix modulates interplay between filter gate and Ba2+ block in a Kcv channel pore. J Gen Physiol 2024; 156:e202313514. [PMID: 38652099 DOI: 10.1085/jgp.202313514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/05/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
The selectivity filter of K+ channels catalyzes a rapid and highly selective transport of K+ while serving as a gate. To understand the control of this filter gate, we use the pore-only K+ channel KcvNTS in which gating is exclusively determined by the activity of the filter gate. It has been previously shown that a mutation at the C-terminus of the pore-helix (S42T) increases K+ permeability and introduces distinct voltage-dependent and K+-sensitive channel closures at depolarizing voltages. Here, we report that the latter are not generated by intrinsic conformational changes of the filter gate but by a voltage-dependent block caused by nanomolar trace contaminations of Ba2+ in the KCl solution. Channel closures can be alleviated by extreme positive voltages and they can be completely abolished by the high-affinity Ba2+ chelator 18C6TA. By contrast, the same channel closures can be augmented by adding Ba2+ at submicromolar concentrations to the cytosolic buffer. These data suggest that a conservative exchange of Ser for Thr in a crucial position of the filter gate increases the affinity of the filter for Ba2+ by >200-fold at positive voltages. While Ba2+ ions apparently remain only for a short time in the filter-binding sites of the WT channel before passing the pore, they remain much longer in the mutant channel. Our findings suggest that the dwell times of permeating and blocking ions in the filter-binding sites are tightly controlled by interactions between the pore-helix and the selectivity filter.
Collapse
Affiliation(s)
- Noel Tewes
- Membrane Biophysics, Technische Universität Darmstadt , Darmstadt, Germany
| | - Beatrice Kubitzki
- Membrane Biophysics, Technische Universität Darmstadt , Darmstadt, Germany
| | - Flandrit Bytyqi
- Membrane Biophysics, Technische Universität Darmstadt , Darmstadt, Germany
| | - Nikola Metko
- Membrane Biophysics, Technische Universität Darmstadt , Darmstadt, Germany
| | - Sebastian Mach
- Membrane Biophysics, Technische Universität Darmstadt , Darmstadt, Germany
| | - Gerhard Thiel
- Membrane Biophysics, Technische Universität Darmstadt , Darmstadt, Germany
- Centre for Synthetic Biology, Technische Universität Darmstadt , Darmstadt, Germany
| | - Oliver Rauh
- Membrane Biophysics, Technische Universität Darmstadt , Darmstadt, Germany
- Centre for Synthetic Biology, Technische Universität Darmstadt , Darmstadt, Germany
| |
Collapse
|
3
|
Rouchidane Eyitayo A, Giraud MF, Daury L, Lambert O, Gonzalez C, Manon S. Cell-free synthesis and reconstitution of Bax in nanodiscs: Comparison between wild-type Bax and a constitutively active mutant. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184075. [PMID: 36273540 DOI: 10.1016/j.bbamem.2022.184075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/06/2022]
Abstract
Bax is a major player in the mitochondrial pathway of apoptosis, by making the Outer Mitochondrial Membrane (OMM) permeable to various apoptogenic factors, including cytochrome c. In order to get further insight into the structure and function of Bax when it is inserted in the OMM, we attempted to reconstitute Bax in nanodiscs. Cell-free protein synthesis in the presence of nanodiscs did not yield Bax-containing nanodiscs, but it provided a simple way to purify full-length Bax without any tag. Purified wild-type Bax (BaxWT) and a constitutively active mutant (BaxP168A) displayed biochemical properties that were in line with previous characterizations following their expression in yeast and human cells followed by their reconstitution into liposomes. Both Bax variants were then reconstituted in nanodiscs. Size exclusion chromatography, dynamic light scattering and transmission electron microscopy showed that nanodiscs formed with BaxP168A were larger than nanodiscs formed with BaxWT. This was consistent with the hypothesis that BaxP168A was reconstituted in nanodiscs as an active oligomer.
Collapse
Affiliation(s)
| | - Marie-France Giraud
- IBGC, UMR5095, CNRS, Université de Bordeaux, France; CBMN, UMR5248, CNRS, Université de Bordeaux, France
| | | | | | | | - Stéphen Manon
- IBGC, UMR5095, CNRS, Université de Bordeaux, France.
| |
Collapse
|