1
|
Burata OE, O’Donnell E, Hyun J, Lucero RM, Thomas JE, Gibbs EM, Reacher I, Carney NA, Stockbridge RB. Peripheral positions encode transport specificity in the small multidrug resistance exporters. Proc Natl Acad Sci U S A 2024; 121:e2403273121. [PMID: 38865266 PMCID: PMC11194549 DOI: 10.1073/pnas.2403273121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024] Open
Abstract
In secondary active transporters, a relatively limited set of protein folds have evolved diverse solute transport functions. Because of the conformational changes inherent to transport, altering substrate specificity typically involves remodeling the entire structural landscape, limiting our understanding of how novel substrate specificities evolve. In the current work, we examine a structurally minimalist family of model transport proteins, the small multidrug resistance (SMR) transporters, to understand the molecular basis for the emergence of a novel substrate specificity. We engineer a selective SMR protein to promiscuously export quaternary ammonium antiseptics, similar to the activity of a clade of multidrug exporters in this family. Using combinatorial mutagenesis and deep sequencing, we identify the necessary and sufficient molecular determinants of this engineered activity. Using X-ray crystallography, solid-supported membrane electrophysiology, binding assays, and a proteoliposome-based quaternary ammonium antiseptic transport assay that we developed, we dissect the mechanistic contributions of these residues to substrate polyspecificity. We find that substrate preference changes not through modification of the residues that directly interact with the substrate but through mutations peripheral to the binding pocket. Our work provides molecular insight into substrate promiscuity among the SMRs and can be applied to understand multidrug export and the evolution of novel transport functions more generally.
Collapse
Affiliation(s)
- Olive E. Burata
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Ever O’Donnell
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Jeonghoon Hyun
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Rachael M. Lucero
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Junius E. Thomas
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Ethan M. Gibbs
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Isabella Reacher
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| | - Nolan A. Carney
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
| | - Randy B. Stockbridge
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI48109
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI48109
| |
Collapse
|
2
|
Moochickal Assainar B, Ragunathan K, Baldridge RD. Direct observation of autoubiquitination for an integral membrane ubiquitin ligase in ERAD. Nat Commun 2024; 15:1340. [PMID: 38351109 PMCID: PMC10864399 DOI: 10.1038/s41467-024-45541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/24/2024] [Indexed: 02/16/2024] Open
Abstract
The endoplasmic reticulum associated degradation (ERAD) pathway regulates protein quality control at the endoplasmic reticulum. ERAD of lumenal and membrane proteins requires a conserved E3 ubiquitin ligase, called Hrd1. We do not understand the molecular configurations of Hrd1 that enable autoubiquitination and the subsequent retrotranslocation of misfolded protein substrates from the ER to the cytosol. Here, we have established a generalizable, single-molecule platform that enables high-efficiency labeling, stoichiometry determination, and functional assays for any integral membrane protein. Using this approach, we directly count Hrd1 proteins reconstituted into individual proteoliposomes. We report that Hrd1 assembles in different oligomeric configurations with mostly monomers and dimers detected at limiting dilution. By correlating oligomeric states with ubiquitination in vitro, we conclude that Hrd1 monomers are inefficient in autoubiquitination while dimers efficiently assemble polyubiquitin chains. Therefore, our results reveal the minimal composition of a Hrd1 oligomer that is capable of autoubiquitination. Our methods are broadly applicable to studying other complex membrane protein functions using reconstituted bilayer systems.
Collapse
Affiliation(s)
- Basila Moochickal Assainar
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA
| | - Kaushik Ragunathan
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA, 02453, USA.
| | - Ryan D Baldridge
- Department of Biological Chemistry, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA.
- Cellular and Molecular Biology Program, University of Michigan Medical School, 1150 W Medical Center Drive, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
3
|
Kang CY, An M, Stockbridge RB. Lanthanum-fluoride electrode-based methods to monitor fluoride transport in cells and reconstituted lipid vesicles. Methods Enzymol 2024; 696:43-63. [PMID: 38658088 DOI: 10.1016/bs.mie.2024.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Fluoride (F-) export proteins, including F- channels and F- transporters, are widespread in biology. They contribute to cellular resistance against fluoride ion, which has relevance as an ancient xenobiotic, and in more modern contexts like organofluorine biosynthesis and degradation or dental medicine. This chapter summarizes quantitative methods to measure fluoride transport across membranes using fluoride-specific lanthanum-fluoride electrodes. Electrode-based measurements can be used to measure unitary fluoride transport rates by membrane proteins that have been purified and reconstituted into lipid vesicles, or to monitor fluoride efflux into living microbial cells. Thus, fluoride electrode-based measurements yield quantitative mechanistic insight into one of the major determinants of fluoride resistance in microorganisms, fungi, yeasts, and plants.
Collapse
Affiliation(s)
- Chia-Yu Kang
- Program in Biophysics, University of Michigan, Ann Arbor, MI, United States
| | - Minjun An
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States
| | - Randy B Stockbridge
- Program in Biophysics, University of Michigan, Ann Arbor, MI, United States; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
4
|
Menon I, Sych T, Son Y, Morizumi T, Lee J, Ernst OP, Khelashvili G, Sezgin E, Levitz J, Menon AK. A cholesterol switch controls phospholipid scrambling by G protein-coupled receptors. J Biol Chem 2024; 300:105649. [PMID: 38237683 PMCID: PMC10874734 DOI: 10.1016/j.jbc.2024.105649] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/04/2024] [Accepted: 01/07/2024] [Indexed: 01/30/2024] Open
Abstract
Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the β1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.
Collapse
Affiliation(s)
- Indu Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Yeeun Son
- Graduate program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School, New York, New York, USA; Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Joon Lee
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA; Institute of Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | - Erdinc Sezgin
- Graduate program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School, New York, New York, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
5
|
Menon I, Sych T, Son Y, Morizumi T, Lee J, Ernst OP, Khelashvili G, Sezgin E, Levitz J, Menon AK. A cholesterol switch controls phospholipid scrambling by G protein-coupled receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.24.568580. [PMID: 38045315 PMCID: PMC10690279 DOI: 10.1101/2023.11.24.568580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Class A G protein-coupled receptors (GPCRs), a superfamily of cell membrane signaling receptors, moonlight as constitutively active phospholipid scramblases. The plasma membrane of metazoan cells is replete with GPCRs, yet has a strong resting trans-bilayer phospholipid asymmetry, with the signaling lipid phosphatidylserine confined to the cytoplasmic leaflet. To account for the persistence of this lipid asymmetry in the presence of GPCR scramblases, we hypothesized that GPCR-mediated lipid scrambling is regulated by cholesterol, a major constituent of the plasma membrane. We now present a technique whereby synthetic vesicles reconstituted with GPCRs can be supplemented with cholesterol to a level similar to that of the plasma membrane and show that the scramblase activity of two prototypical GPCRs, opsin and the β1-adrenergic receptor, is impaired upon cholesterol loading. Our data suggest that cholesterol acts as a switch, inhibiting scrambling above a receptor-specific threshold concentration to disable GPCR scramblases at the plasma membrane.
Collapse
Affiliation(s)
- Indu Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Taras Sych
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Yeeun Son
- Graduate program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School, New York, NY 10065, USA
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Joon Lee
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Oliver P. Ernst
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
- Institute of Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Erdinc Sezgin
- Graduate program in Biochemistry, Cell and Molecular Biology, Weill Cornell Graduate School, New York, NY 10065, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| | - Anant K. Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
6
|
Jahn H, Bartoš L, Dearden GI, Dittman JS, Holthuis JCM, Vácha R, Menon AK. Phospholipids are imported into mitochondria by VDAC, a dimeric beta barrel scramblase. Nat Commun 2023; 14:8115. [PMID: 38065946 PMCID: PMC10709637 DOI: 10.1038/s41467-023-43570-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/13/2023] [Indexed: 12/17/2023] Open
Abstract
Mitochondria are double-membrane-bounded organelles that depend critically on phospholipids supplied by the endoplasmic reticulum. These lipids must cross the outer membrane to support mitochondrial function, but how they do this is unclear. We identify the Voltage Dependent Anion Channel (VDAC), an abundant outer membrane protein, as a scramblase-type lipid transporter that catalyzes lipid entry. On reconstitution into membrane vesicles, dimers of human VDAC1 and VDAC2 catalyze rapid transbilayer translocation of phospholipids by a mechanism that is unrelated to their channel activity. Coarse-grained molecular dynamics simulations of VDAC1 reveal that lipid scrambling occurs at a specific dimer interface where polar residues induce large water defects and bilayer thinning. The rate of phospholipid import into yeast mitochondria is an order of magnitude lower in the absence of VDAC homologs, indicating that VDACs provide the main pathway for lipid entry. Thus, VDAC isoforms, members of a superfamily of beta barrel proteins, moonlight as a class of phospholipid scramblases - distinct from alpha-helical scramblase proteins - that act to import lipids into mitochondria.
Collapse
Affiliation(s)
- Helene Jahn
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Ladislav Bartoš
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic
| | - Grace I Dearden
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Jeremy S Dittman
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Joost C M Holthuis
- Department of Molecular Cell Biology, University of Osnabrück, Osnabrück, 49076, Germany
| | - Robert Vácha
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
7
|
Research on Dynamic Cooperative Replenishment Optimization of Shipbuilding Enterprise Inventory Control under Uncertainty. SUSTAINABILITY 2022. [DOI: 10.3390/su14042113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aiming at the problem of high inventory control costs of shipbuilding enterprises under uncertain conditions, this paper constructs and optimizes a dynamic collaborative replenishment model of shipbuilding enterprises inventory control. This model adopts integrated supply chain management theory and collaborative theory to analyze the inventory control principle in shipbuilding enterprises, and its goal is to minimize the cost and maximize the service level. The dynamic replenishment strategy from two types of suppliers is given by using mathematical knowledge, such as optimization theory, probability theory, and mathematical statistics to solve the model. Finally, shipbuilding enterprises take paint inventory control as an example to test and verify the validity and correctness of the model by using numerical simulation and sensitivity analysis. The results show that the dynamic collaborative replenishment model of shipbuilding enterprises inventory control can make full use of the advantages of two types of suppliers. Additionally, it cannot only quickly respond to demand changes, but can also maintain low operating costs. Therefore, the dynamic collaborative replenishment model could effectively solve the problem of high inventory control costs of shipbuilding enterprises under uncertain conditions and has great application value and practical significance.
Collapse
|