1
|
Poonia P, Valabhoju V, Li T, Iben J, Niu X, Lin Z, Hinnebusch A. Yeast poly(A)-binding protein (Pab1) controls translation initiation in vivo primarily by blocking mRNA decapping and decay. Nucleic Acids Res 2025; 53:gkaf143. [PMID: 40071937 PMCID: PMC11897895 DOI: 10.1093/nar/gkaf143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/15/2025] Open
Abstract
Poly(A)-binding protein (Pab1 in yeast) is involved in mRNA decay and translation initiation, but its molecular functions are incompletely understood. We found that auxin-induced degradation of Pab1 reduced bulk mRNA and polysome abundance in WT but not in a mutant lacking the catalytic subunit of decapping enzyme (Dcp2), suggesting that enhanced decapping/degradation is a major driver of reduced translation at limiting Pab1. An increased median poly(A) tail length conferred by Pab1 depletion was likewise not observed in the dcp2Δ mutant, suggesting that mRNA isoforms with shorter tails are preferentially decapped/degraded at limiting Pab1. In contrast to findings on mammalian cells, the translational efficiencies (TEs) of many mRNAs were altered by Pab1 depletion; however, these changes were diminished in dcp2Δ cells, suggesting that reduced mRNA abundance is also a major driver of translational reprogramming at limiting Pab1. Thus, assembly of the closed-loop mRNP via PABP-eIF4G interaction appears to be dispensable for wild-type translation of most transcripts at normal mRNA levels. Interestingly, histone mRNAs and proteins were preferentially diminished on Pab1 depletion in DCP2 but not dcp2Δ cells, accompanied by activation of internal cryptic promoters in the manner expected for reduced nucleosome occupancies, implicating Pab1 in post-transcriptional control of histone gene expression.
Collapse
Affiliation(s)
- Poonam Poonia
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Vishalini Valabhoju
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tianwei Li
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - James Iben
- Molecular Genomics Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Xiao Niu
- Department of Biology, Saint Louis University, St. Louis, MO 63103, United States
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, MO 63103, United States
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
2
|
Poonia P, Valabhoju V, Li T, Iben J, Niu X, Lin Z, Hinnebusch AG. Yeast poly(A)-binding protein (Pab1) controls translation initiation in vivo primarily by blocking mRNA decapping and decay. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590253. [PMID: 38903079 PMCID: PMC11188147 DOI: 10.1101/2024.04.19.590253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Poly(A)-binding protein (Pab1 in yeast) is involved in mRNA decay and translation initiation, but its molecular functions are incompletely understood. We found that auxin-induced degradation of Pab1 reduced bulk mRNA and polysome abundance in a manner suppressed by deleting the catalytic subunit of decapping enzyme (dcp2Δ), demonstrating that enhanced decapping/degradation is the major driver of reduced mRNA abundance and protein synthesis at limiting Pab1 levels. An increased median poly(A) tail length conferred by Pab1 depletion was also nullified by dcp2Δ, suggesting that mRNA isoforms with shorter tails are preferentially decapped/degraded at limiting Pab1. In contrast to findings on mammalian cells, the translational efficiencies (TEs) of many mRNAs were altered by Pab1 depletion; however, these changes were broadly diminished by dcp2∆, suggesting that reduced mRNA abundance is a major driver of translational reprogramming at limiting Pab1. Thus, assembly of the closed-loop mRNP via PABP-eIF4G interaction appears to be dispensable for normal translation of most yeast mRNAs in vivo. Interestingly, histone mRNAs and proteins are preferentially diminished on Pab1 depletion dependent on Dcp2, accompanied by activation of internal cryptic promoters in the manner expected for reduced nucleosome occupancies, revealing a new layer of post-transcriptional control of histone gene expression.
Collapse
Affiliation(s)
- Poonam Poonia
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Vishalini Valabhoju
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Tianwei Li
- Department of Biology, Saint Louis University, St. Louis, MO
| | - James Iben
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Xiao Niu
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Zhenguo Lin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
- Department of Biology, Saint Louis University, St. Louis, MO
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| |
Collapse
|
3
|
Arvola RM, Goldstrohm AC. Measuring Poly-Adenosine Tail Length of RNAs by High-Resolution Northern Blotting Coupled with RNase H Cleavage. Methods Mol Biol 2024; 2723:93-111. [PMID: 37824066 DOI: 10.1007/978-1-0716-3481-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The poly-adenosine, or poly(A) tail, plays key roles in controlling the stability and translation of messenger RNAs in all eukaryotes, and, as such, facile assays that can measure poly(A) length are needed. This chapter describes an approach that couples RNase H-mediated cleavage of an RNA of interest with high-resolution denaturing gel electrophoresis and northern blot-based detection. Major advantages of this method include the ability to directly measure the abundance of any RNA and the length of its poly(A) tail without amplification steps. The assay provides high specificity, sensitivity, and reproducibility for accurate quantitation using standard molecular biology equipment and reagents. Overall, the high-resolution northern blotting approach offers a cost-effective means of poly(A) RNA analysis that is especially useful for small numbers of transcripts and comparisons between experimental conditions or time points.
Collapse
Affiliation(s)
- René M Arvola
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Aaron C Goldstrohm
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Kozlov G, Mattijssen S, Jiang J, Nyandwi S, Sprules T, Iben J, Coon S, Gaidamakov S, Noronha AM, Wilds C, Maraia R, Gehring K. Structural basis of 3'-end poly(A) RNA recognition by LARP1. Nucleic Acids Res 2022; 50:9534-9547. [PMID: 35979957 PMCID: PMC9458460 DOI: 10.1093/nar/gkac696] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
La-related proteins (LARPs) comprise a family of RNA-binding proteins involved in a wide range of posttranscriptional regulatory activities. LARPs share a unique tandem of two RNA-binding domains, La motif (LaM) and RNA recognition motif (RRM), together referred to as a La-module, but vary in member-specific regions. Prior structural studies of La-modules reveal they are pliable platforms for RNA recognition in diverse contexts. Here, we characterize the La-module of LARP1, which plays an important role in regulating synthesis of ribosomal proteins in response to mTOR signaling and mRNA stabilization. LARP1 has been well characterized functionally but no structural information exists for its La-module. We show that unlike other LARPs, the La-module in LARP1 does not contain an RRM domain. The LaM alone is sufficient for binding poly(A) RNA with submicromolar affinity and specificity. Multiple high-resolution crystal structures of the LARP1 LaM domain in complex with poly(A) show that it is highly specific for the RNA 3'-end, and identify LaM residues Q333, Y336 and F348 as the most critical for binding. Use of a quantitative mRNA stabilization assay and poly(A) tail-sequencing demonstrate functional relevance of LARP1 RNA binding in cells and provide novel insight into its poly(A) 3' protection activity.
Collapse
Affiliation(s)
- Guennadi Kozlov
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jianning Jiang
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Samuel Nyandwi
- Department of Biochemistry, McGill University, Montréal, Canada,Centre de recherche en biologie structurale, McGill University, Montréal, Canada
| | - Tara Sprules
- Centre de recherche en biologie structurale, McGill University, Montréal, Canada,Quebec/Eastern Canada NMR Centre, McGill University, Montréal, Canada
| | - James R Iben
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Steven L Coon
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Sergei Gaidamakov
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Anne M Noronha
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Canada
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University, Montréal, Canada
| | - Richard J Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | | |
Collapse
|