1
|
Lin Y, Horne WS. Backbone Modification in a Protein Hydrophobic Core. Chemistry 2024; 30:e202401890. [PMID: 38753977 PMCID: PMC11345847 DOI: 10.1002/chem.202401890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
Targeted protein backbone modification can recreate tertiary structures reminiscent of folds found in nature on artificial scaffolds with improved biostability. Incorporation of altered monomers in such entities is typically limited to sites distant from the hydrophobic core to avoid potential disruptions to folding. This is limiting, as it is advantageous in some applications to incorporate artificial connectivity at buried sites. Here, we report an examination of protein backbone modification targeted specifically to hydrophobic core positions and its impacts on tertiary folded structure and fold stability. Different artificial monomer types are placed at core, core-flanking, or solvent-exposed positions in a compact three-helix protein. Effects on structure and folding energetics are assessed by NMR spectroscopy and biophysical methods. Results show that artificial residues can be well accommodated in the hydrophobic core of a defined tertiary fold, with effects on stability only modestly larger than identical changes at solvent-exposed sites. Collectively, these results provide new insights into folding behavior of protein-like artificial chains as well as strategies for the design of such molecules.
Collapse
Affiliation(s)
- Yuhan Lin
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, 219 Parkman Ave., Pittsburgh, PA 15260, USA
| |
Collapse
|
2
|
Rao SR, Harmon TW, Heath SL, Wolfe JA, Santhouse JR, O'Brien GL, Distefano AN, Reinert ZE, Horne WS. Chemical Shifts of Artificial Monomers Used to Construct Heterogeneous-Backbone Protein Mimetics in Random Coil and Folded States. Pept Sci (Hoboken) 2023; 115:e24297. [PMID: 37397503 PMCID: PMC10312354 DOI: 10.1002/pep2.24297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/27/2022] [Indexed: 03/03/2024]
Abstract
The construction of protein-sized synthetic chains that blend natural amino acids with artificial monomers to create so-called heterogeneous-backbones is a powerful approach to generate complex folds and functions from bio-inspired agents. A variety of techniques from structural biology commonly used to study natural proteins have been adapted to investigate folding in these entities. In NMR characterization of proteins, proton chemical shift is a straightforward to acquire, information-rich metric that bears directly on a variety of properties related to folding. Leveraging chemical shift to gain insight into folding requires a set of reference chemical shift values corresponding to each building block type (i.e., the 20 canonical amino acids in the case of natural proteins) in a random coil state and knowledge of systematic changes in chemical shift associated with particular folded conformations. Although well documented for natural proteins, these issues remain unexplored in the context of protein mimetics. Here, we report random coil chemical shift values for a library of artificial amino acid monomers frequently used to construct heterogeneous-backbone protein analogues as well as a spectroscopic signature associated with one monomer class, β3-residues bearing proteinogenic side chains, adopting a helical folded conformation. Collectively, these results will facilitate the continued utilization of NMR for the study of structure and dynamics in protein-like artificial backbones.
Collapse
Affiliation(s)
- Shilpa R Rao
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Thomas W Harmon
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Shelby L Heath
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jacob A Wolfe
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | - Gregory L O'Brien
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Alexis N Distefano
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Zachary E Reinert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - W Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| |
Collapse
|
3
|
Santhouse JR, Leung JMG, Chong LT, Horne WS. Implications of the unfolded state in the folding energetics of heterogeneous-backbone protein mimetics. Chem Sci 2022; 13:11798-11806. [PMID: 36320921 PMCID: PMC9580521 DOI: 10.1039/d2sc04427g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/19/2022] [Indexed: 12/28/2022] Open
Abstract
Sequence-encoded folding is the foundation of protein structure and is also possible in synthetic chains of artificial chemical composition. In natural proteins, the characteristics of the unfolded state are as important as those of the folded state in determining folding energetics. While much is known about folded structures adopted by artificial protein-like chains, corresponding information about the unfolded states of these molecules is lacking. Here, we report the consequences of altered backbone composition on the structure, stability, and dynamics of the folded and unfolded states of a compact helix-rich protein. Characterization through a combination of biophysical experiments and atomistic simulation reveals effects of backbone modification that depend on both the type of artificial monomers employed and where they are applied in sequence. In general, introducing artificial connectivity in a way that reinforces characteristics of the unfolded state ensemble of the prototype natural protein minimizes the impact of chemical changes on folded stability. These findings have implications in the design of protein mimetics and provide an atomically detailed picture of the unfolded state of a natural protein and artificial analogues under non-denaturing conditions. Biophysical experiments and atomistic simulation reveal impacts of protein backbone alteration on the ensemble that defines the unfolded state. These effects have implications on folded stability of protein mimetics.![]()
Collapse
Affiliation(s)
| | - Jeremy M. G. Leung
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15211, USA
| | - Lillian T. Chong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15211, USA
| | - W. Seth Horne
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15211, USA
| |
Collapse
|