1
|
Li C, Xu J. Construction of Promoter-Ribosome Binding Site Library for Manipulating Gene Expression in the Hyperthermophilic Archaeon Thermococcus kodakarensis. ACS Synth Biol 2025. [PMID: 40424603 DOI: 10.1021/acssynbio.5c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Extremely thermophilic archaea, such as Thermococcus kodakarensis, possess biotechnological potential as sources of either thermostable enzymes or biotransformation processes under high temperature. However, the absence of a tool for fine-tuning of gene expression impedes its advancement as a platform organism. Here, we constructed a genetic element library in T. kodakarensis, which includes constitutive promoters, inducible promoters, and ribosome binding site (RBS). The promoter library consisted of 76 constitutive promoters with expression strengths spanning a ∼8 × 103-fold dynamic range and 22 inducible promoters consisting of 15 maltodextrin-inducible promoters and 7 pressure-inducible promoters with maximum induction strength achieving a ∼8-fold increase. We also generated an RBS library containing 31 different RBS sequences, with translation strengths covering an ∼5-fold dynamic range. Utilizing the characterized and identified element library, we constructed a high hydrostatic pressure-inducible toxin-antitoxin (TA) system as the toxin counterselectable cassette regulated by an antitoxin switch for genetic modifications in T. kodakarensis to realize markerless gene disruption directly in rich medium. Moreover, the rational control of the relative expression levels of the TA system enhanced the knockout efficiency. We then replaced the native promoters of genes associated with hydrogen production pathways with various types and strengths of promoters, resulting in a 2.68-fold increase in hydrogen yield (59.4 mmol liter-1 vs 22.2 mmol liter-1). Therefore, the genetic toolbox developed in this work is highly significant for advancing fundamental biological research and biotechnological engineering of hyperthermophilic Thermococcales.
Collapse
Affiliation(s)
- Cong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jun Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
Tsai YL, Wolf EJ, Fluke KA, Fuchs RT, Dai N, Johnson SR, Sun Z, Elkins L, Burkhart BW, Santangelo TJ, Corrêa IR. Comprehensive nucleoside analysis of archaeal RNA modification profiles reveals an m 7G in the conserved P loop of 23S rRNA. Cell Rep 2025; 44:115471. [PMID: 40131932 PMCID: PMC12124282 DOI: 10.1016/j.celrep.2025.115471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/17/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Extremophilic Archaea employ diverse RNA modifications for survival. Our understanding of the modified nucleosides and their functions in Archaea is far from complete. Here, we establish an extensive profile of nucleoside modifications in thermophilic and mesophilic Archaea. Through liquid chromatography-tandem mass spectrometry (LC-MS/MS) and rigorous non-coding RNA depletion, we identify four previously unannotated modifications in archaeal mRNA. Nucleoside analysis conducted on total, large, small, and mRNA-enriched subfractions of hyperthermophile Thermococcus kodakarensis reveals modifications whose relative abundance is dynamically responsive to growth temperatures. To predict archaeal RNA-modifying enzymes, we leverage open-access databases to compare putative functional domains with previously annotated enzymes. Our approach leads to the discovery of a methyltransferase responsible for the installation of m7G in the P loop of 23S rRNA peptidyl transferase center in T. kodakarensis. The methyltransferase activity is confirmed in vitro with synthetic substrates and in vivo by assessing the presence of the m7G modification in a genetic deletion strain.
Collapse
MESH Headings
- RNA, Ribosomal, 23S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/genetics
- RNA, Archaeal/metabolism
- RNA, Archaeal/genetics
- RNA, Archaeal/chemistry
- Thermococcus/genetics
- Thermococcus/metabolism
- Nucleosides/metabolism
- Methyltransferases/metabolism
- RNA Processing, Post-Transcriptional
Collapse
Affiliation(s)
| | - Eric J Wolf
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Kristin A Fluke
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Ryan T Fuchs
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Nan Dai
- New England Biolabs Inc., Beverly, MA 01915, USA
| | | | - Zhiyi Sun
- New England Biolabs Inc., Beverly, MA 01915, USA
| | - Liam Elkins
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Brett W Burkhart
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | | |
Collapse
|
3
|
Ithurbide S, Buan N, Schulze S. Advancing archaeal research through FAIR resource and data sharing, and inclusive community building. Commun Biol 2025; 8:519. [PMID: 40157984 PMCID: PMC11954925 DOI: 10.1038/s42003-025-07962-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Over the last two decades archaeal research has expanded into a wide-ranging research field, driven by a fairly small research community. Archaea are now recognized as important players in the One-Health approach and expertise on the biology of archaea has become crucial in the study of a broad range of topics and environments, including the host-associated microbiomes, major nutrient cycles, greenhouse gas metabolism, the cell biology and origin of eukaryotes, adaptation of life to extremes, as well as various biotechnological applications. Here, we summarize existing resources and ongoing efforts in the engaged broader archaeal scientific community to accelerate research and resource sharing guided by FAIR (findable, accessible, interoperable, reusable) data-sharing principles. We highlight ongoing community efforts that: (i) aim to share protocols and best practices for working with archaea (e.g. ARCHAEA.bio), (ii) combine large 'omics datasets for the dissemination of unified, system-wide results (e.g. Archaeal Proteome Project, KBase) and (iii) provide opportunities for scientists to present their work in a supportive environment and to forge connections and collaborations (e.g. Archaea Power Hour). Together, these resources and projects promise to spur and cross-fertilize research, making archaeal research more accessible to a broader and more diverse audience.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada
| | - Nicole Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Stefan Schulze
- Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA.
| |
Collapse
|
4
|
Fluke KA, Dai N, Wolf EJ, Fuchs RT, Ho PS, Talbott V, Elkins L, Tsai YL, Schiltz J, Febvre HP, Czarny R, Robb GB, Corrêa IR, Santangelo TJ. A novel N4, N4-dimethylcytidine in the archaeal ribosome enhances hyperthermophily. Proc Natl Acad Sci U S A 2024; 121:e2405999121. [PMID: 39471227 PMCID: PMC11551388 DOI: 10.1073/pnas.2405999121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/26/2024] [Indexed: 11/01/2024] Open
Abstract
Ribosome structure and activity are challenged at high temperatures, often demanding modifications to ribosomal RNAs (rRNAs) to retain translation fidelity. LC-MS/MS, bisulfite-sequencing, and high-resolution cryo-EM structures of the archaeal ribosome identified an RNA modification, N4,N4-dimethylcytidine (m42C), at the universally conserved C918 in the 16S rRNA helix 31 loop. Here, we characterize and structurally resolve a class of RNA methyltransferase that generates m42C whose function is critical for hyperthermophilic growth. m42C is synthesized by the activity of a unique family of RNA methyltransferase containing a Rossman-fold that targets only intact ribosomes. The phylogenetic distribution of the newly identified m42C synthase family implies that m42C is biologically relevant in each domain. Resistance of m42C to bisulfite-driven deamination suggests that efforts to capture m5C profiles via bisulfite sequencing are also capturing m42C.
Collapse
Affiliation(s)
- Kristin A. Fluke
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO80523
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Nan Dai
- New England Biolabs Inc., Beverly, MA01915
| | | | | | - P. Shing Ho
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Victoria Talbott
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO80523
| | - Liam Elkins
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO80523
| | | | - Jackson Schiltz
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Hallie P. Febvre
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | - Ryan Czarny
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| | | | | | - Thomas J. Santangelo
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO80523
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO80523
| |
Collapse
|
5
|
Dahal U, Bansal A. Unravelling Prokaryotic Codon Usage: Insights from Phylogeny, Influencing Factors and Pathogenicity. Curr Genomics 2024; 26:81-94. [PMID: 40433443 PMCID: PMC12105230 DOI: 10.2174/0113892029325491240919151045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/18/2024] [Accepted: 09/13/2024] [Indexed: 05/29/2025] Open
Abstract
Analyzing prokaryotic codon usage trends has become a crucial topic of study with significant ramifications for comprehending microbial genetics, classification, evolution, and the control of gene expression. This review study explores the numerous facets of prokaryotic codon usage patterns, looking at different parameters like habitat and lifestyle across broad groups of prokaryotes by emphasizing the role of codon reprogramming in adaptive strategies and its integration into systems biology. We also explored the numerous variables driving codon usage bias, including natural selection, mutation, horizontal gene transfer, codon-anticodon interaction, and genomic composition in prokaryotes through a thorough study of current literature. Furthermore, a special session on codon usage on pathogenic prokaryotes and the role of codon usage in the phylogeny of prokaryotes has been discussed. We also looked at the various software and indices that have been recently applied to prokaryotic genomes. The promising directions that lay ahead to map the future of codon usage research on prokaryotes have been emphasized. Codon usage variations across prokaryotic communities could be better understood by combining environmental, metagenomic, and system biology approaches.
Collapse
Affiliation(s)
- Ujwal Dahal
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| | - Anu Bansal
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Punjab 144411, India
| |
Collapse
|
6
|
Gallo G, Aulitto M. Advances in Extremophile Research: Biotechnological Applications through Isolation and Identification Techniques. Life (Basel) 2024; 14:1205. [PMID: 39337987 PMCID: PMC11433292 DOI: 10.3390/life14091205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Extremophiles, organisms thriving in extreme environments such as hot springs, deep-sea hydrothermal vents, and hypersaline ecosystems, have garnered significant attention due to their remarkable adaptability and biotechnological potential. This review presents recent advancements in isolating and characterizing extremophiles, highlighting their applications in enzyme production, bioplastics, environmental management, and space exploration. The unique biological mechanisms of extremophiles offer valuable insights into life's resilience and potential uses in industry and astrobiology.
Collapse
Affiliation(s)
- Giovanni Gallo
- Division of Microbiology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Martina Aulitto
- Department of Biology, University of Napoli Federico II, Complesso Universitario Monte Sant'Angelo, 80126 Napoli, Italy
| |
Collapse
|
7
|
Sitara A, Hocq R, Horvath J, Pflügl S. Industrial biotechnology goes thermophilic: Thermoanaerobes as promising hosts in the circular carbon economy. BIORESOURCE TECHNOLOGY 2024; 408:131164. [PMID: 39069138 DOI: 10.1016/j.biortech.2024.131164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Transitioning away from fossil feedstocks is imperative to mitigate climate change, and necessitates the utilization of renewable, alternative carbon and energy sources to foster a circular carbon economy. In this context, lignocellulosic biomass and one-carbon compounds emerge as promising feedstocks that could be renewably upgraded by thermophilic anaerobes (thermoanaerobes) via gas fermentation or consolidated bioprocessing to value-added products. In this review, the potential of thermoanaerobes for cost-efficient, effective and sustainable bioproduction is discussed. Metabolic and bioprocess engineering approaches are reviewed to draw a comprehensive picture of current developments and future perspectives for the conversion of renewable feedstocks to chemicals and fuels of interest. Selected bioprocessing scenarios are outlined, offering practical insights into the applicability of thermoanaerobes at a large scale. Collectively, the potential advantages of thermoanaerobes regarding process economics could facilitate an easier transition towards sustainable bioprocesses with renewable feedstocks.
Collapse
Affiliation(s)
- Angeliki Sitara
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; CIRCE Biotechnologie GmbH, Kerpengasse 125, 1210 Vienna, Austria
| | - Josef Horvath
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
8
|
Fluke KA, Fuchs RT, Tsai YL, Talbott V, Elkins L, Febvre HP, Dai N, Wolf EJ, Burkhart BW, Schiltz J, Brett Robb G, Corrêa IR, Santangelo TJ. The extensive m 5C epitranscriptome of Thermococcus kodakarensis is generated by a suite of RNA methyltransferases that support thermophily. Nat Commun 2024; 15:7272. [PMID: 39179532 PMCID: PMC11344067 DOI: 10.1038/s41467-024-51410-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 08/06/2024] [Indexed: 08/26/2024] Open
Abstract
RNAs are often modified to invoke new activities. While many modifications are limited in frequency, restricted to non-coding RNAs, or present only in select organisms, 5-methylcytidine (m5C) is abundant across diverse RNAs and fitness-relevant across Domains of life, but the synthesis and impacts of m5C have yet to be fully investigated. Here, we map m5C in the model hyperthermophile, Thermococcus kodakarensis. We demonstrate that m5C is ~25x more abundant in T. kodakarensis than human cells, and the m5C epitranscriptome includes ~10% of unique transcripts. T. kodakarensis rRNAs harbor tenfold more m5C compared to Eukarya or Bacteria. We identify at least five RNA m5C methyltransferases (R5CMTs), and strains deleted for individual R5CMTs lack site-specific m5C modifications that limit hyperthermophilic growth. We show that m5C is likely generated through partial redundancy in target sites among R5CMTs. The complexity of the m5C epitranscriptome in T. kodakarensis argues that m5C supports life in the extremes.
Collapse
Affiliation(s)
- Kristin A Fluke
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Ryan T Fuchs
- New England Biolabs Inc., Beverly, MA, 01915, USA
| | | | - Victoria Talbott
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA
| | - Liam Elkins
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Hallie P Febvre
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Nan Dai
- New England Biolabs Inc., Beverly, MA, 01915, USA
| | - Eric J Wolf
- New England Biolabs Inc., Beverly, MA, 01915, USA
| | - Brett W Burkhart
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Jackson Schiltz
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - G Brett Robb
- New England Biolabs Inc., Beverly, MA, 01915, USA
| | | | - Thomas J Santangelo
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, 80523, USA.
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
9
|
Garcia AA, Chadwick GL, Liu XL, Welander PV. Identification of two archaeal GDGT lipid-modifying proteins reveals diverse microbes capable of GMGT biosynthesis and modification. Proc Natl Acad Sci U S A 2024; 121:e2318761121. [PMID: 38885389 PMCID: PMC11214058 DOI: 10.1073/pnas.2318761121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
Archaea produce unique membrane-spanning lipids (MSLs), termed glycerol dialkyl glycerol tetraethers (GDGTs), which aid in adaptive responses to various environmental challenges. GDGTs can be modified through cyclization, cross-linking, methylation, hydroxylation, and desaturation, resulting in structurally distinct GDGT lipids. Here, we report the identification of radical SAM proteins responsible for two of these modifications-a glycerol monoalkyl glycerol tetraether (GMGT) synthase (Gms), responsible for covalently cross-linking the two hydrocarbon tails of a GDGT to produce GMGTs, and a GMGT methylase (Gmm), capable of methylating the core hydrocarbon tail. Heterologous expression of Gms proteins from various archaea in Thermococcus kodakarensis results in the production of GMGTs in two isomeric forms. Further, coexpression of Gms and Gmm produces mono- and dimethylated GMGTs and minor amounts of trimethylated GMGTs with only trace GDGT methylation. Phylogenetic analyses reveal the presence of Gms homologs in diverse archaeal genomes spanning all four archaeal superphyla and in multiple bacterial phyla with the genetic potential to synthesize fatty acid-based MSLs, demonstrating that GMGT production may be more widespread than previously appreciated. We demonstrate GMGT production in three Gms-encoding archaea, identifying an increase in GMGTs in response to elevated temperature in two Archaeoglobus species and the production of GMGTs with up to six rings in Vulcanisaeta distributa. The occurrence of such highly cyclized GMGTs has been limited to environmental samples and their detection in culture demonstrates the utility of combining genetic, bioinformatic, and lipid analyses to identify producers of distinct archaeal membrane lipids.
Collapse
Affiliation(s)
- Andy A. Garcia
- Department of Earth System Science, Stanford University, Stanford, CA94305
| | - Grayson L. Chadwick
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Xiao-Lei Liu
- Department of Geology and Geophysics, University of Oklahoma, Norman, OK73019
| | - Paula V. Welander
- Department of Earth System Science, Stanford University, Stanford, CA94305
| |
Collapse
|
10
|
Liman GLS, Garcia AA, Fluke KA, Anderson HR, Davidson SC, Welander PV, Santangelo TJ. Tetraether archaeal lipids promote long-term survival in extreme conditions. Mol Microbiol 2024; 121:882-894. [PMID: 38372181 PMCID: PMC11096074 DOI: 10.1111/mmi.15240] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
The sole unifying feature of the incredibly diverse Archaea is their isoprenoid-based ether-linked lipid membranes. Unique lipid membrane composition, including an abundance of membrane-spanning tetraether lipids, impart resistance to extreme conditions. Many questions remain, however, regarding the synthesis and modification of tetraether lipids and how dynamic changes to archaeal lipid membrane composition support hyperthermophily. Tetraether membranes, termed glycerol dibiphytanyl glycerol tetraethers (GDGTs), are generated by tetraether synthase (Tes) by joining the tails of two bilayer lipids known as archaeol. GDGTs are often further specialized through the addition of cyclopentane rings by GDGT ring synthase (Grs). A positive correlation between relative GDGT abundance and entry into stationary phase growth has been observed, but the physiological impact of inhibiting GDGT synthesis has not previously been reported. Here, we demonstrate that the model hyperthermophile Thermococcus kodakarensis remains viable when Tes (TK2145) or Grs (TK0167) are deleted, permitting phenotypic and lipid analyses at different temperatures. The absence of cyclopentane rings in GDGTs does not impact growth in T. kodakarensis, but an overabundance of rings due to ectopic Grs expression is highly fitness negative at supra-optimal temperatures. In contrast, deletion of Tes resulted in the loss of all GDGTs, cyclization of archaeol, and loss of viability upon transition to the stationary phase in this model archaea. These results demonstrate the critical roles of highly specialized, dynamic, isoprenoid-based lipid membranes for archaeal survival at high temperatures.
Collapse
Affiliation(s)
- Geraldy Lie Stefanus Liman
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Andy A. Garcia
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| | - Kristin A. Fluke
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Sarah C. Davidson
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Paula V. Welander
- Department of Earth System Science, Stanford University, Stanford, CA 94305, USA
| | - Thomas J. Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
11
|
Archaea as a Model System for Molecular Biology and Biotechnology. Biomolecules 2023; 13:biom13010114. [PMID: 36671499 PMCID: PMC9855744 DOI: 10.3390/biom13010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/29/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Archaea represents the third domain of life, displaying a closer relationship with eukaryotes than bacteria. These microorganisms are valuable model systems for molecular biology and biotechnology. In fact, nowadays, methanogens, halophiles, thermophilic euryarchaeota, and crenarchaeota are the four groups of archaea for which genetic systems have been well established, making them suitable as model systems and allowing for the increasing study of archaeal genes' functions. Furthermore, thermophiles are used to explore several aspects of archaeal biology, such as stress responses, DNA replication and repair, transcription, translation and its regulation mechanisms, CRISPR systems, and carbon and energy metabolism. Extremophilic archaea also represent a valuable source of new biomolecules for biological and biotechnological applications, and there is growing interest in the development of engineered strains. In this review, we report on some of the most important aspects of the use of archaea as a model system for genetic evolution, the development of genetic tools, and their application for the elucidation of the basal molecular mechanisms in this domain of life. Furthermore, an overview on the discovery of new enzymes of biotechnological interest from archaea thriving in extreme environments is reported.
Collapse
|