1
|
Jia H, Dantuluri S, Margulies S, Smith V, Lever R, Allers T, Koh J, Chen S, Maupin-Furlow JA. RecJ3/4-aRNase J form a Ubl-associated nuclease complex functioning in survival against DNA damage in Haloferax volcanii. mBio 2023; 14:e0085223. [PMID: 37458473 PMCID: PMC10470531 DOI: 10.1128/mbio.00852-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/02/2023] [Indexed: 09/02/2023] Open
Abstract
Nucleases are strictly regulated and often localized in the cell to avoid the uncontrolled degradation of DNA and RNA. Here, a new type of nuclease complex, composed of RecJ3, RecJ4, and aRNase J, was identified through its ATP-dependent association with the ubiquitin-like SAMP1 and AAA-ATPase Cdc48a. The complex was discovered in Haloferax volcanii, an archaeon lacking an RNA exosome. Genetic analysis revealed aRNase J to be essential and RecJ3, RecJ4, and Cdc48a to function in the recovery from DNA damage including genotoxic agents that generate double-strand breaks. The RecJ3:RecJ4:aRNase J complex (isolated in 2:2:1 stoichiometry) functioned primarily as a 3'-5' exonuclease in hydrolyzing RNA and ssDNA, with the mechanism non-processive for ssDNA. aRNase J could also be purified as a homodimer that catalyzed endoribonuclease activity and, thus, was not restricted to the 5'-3' exonuclease activity typical of aRNase J homologs. Moreover, RecJ3 and RecJ4 could be purified as a 560-kDa subcomplex in equimolar subunit ratio with nuclease activities mirroring the full RecJ3/4-aRNase J complex. These findings prompted reconstitution assays that suggested RecJ3/4 could suppress, alter, and/or outcompete the nuclease activities of aRNase J. Based on the phenotypic results, this control mechanism of aRNase J by RecJ3/4 is not necessary for cell growth but instead appears important for DNA repair. IMPORTANCE Nucleases are critical for various cellular processes including DNA replication and repair. Here, a dynamic type of nuclease complex is newly identified in the archaeon Haloferax volcanii, which is missing the canonical RNA exosome. The complex, composed of RecJ3, RecJ4, and aRNase J, functions primarily as a 3'-5' exonuclease and was discovered through its ATP-dependent association with the ubiquitin-like SAMP1 and Cdc48a. aRNase J alone forms a homodimer that has endonuclease function and, thus, is not restricted to 5'-3' exonuclease activity typical of other aRNase J enzymes. RecJ3/4 appears to suppress, alter, and/or outcompete the nuclease activities of aRNase J. While aRNase J is essential for growth, RecJ3/4, Cdc48a, and SAMPs are important for recovery against DNA damage. These biological distinctions may correlate with the regulated nuclease activity of aRNase J in the RecJ3/4-aRNaseJ complex.
Collapse
Affiliation(s)
- Huiyong Jia
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Swathi Dantuluri
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Shae Margulies
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
| | - Victoria Smith
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Rebecca Lever
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
| | - Sixue Chen
- Proteomics and Mass Spectrometry, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Department of Biology, College of Liberal Arts and Sciences, University of Florida, Gainesville, Florida, USA
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
2
|
Jia H, Couto-Rodriguez R, Johnson S, Medina S, Novillo B, Huynh P, Kim M, Cooper C, Michalik M, Siew B, Turesson E, Maupin-Furlow JA. Highly efficient and simple SSPER and rrPCR approaches for the accurate site-directed mutagenesis of large and small plasmids. N Biotechnol 2022; 72:22-28. [PMID: 36007808 PMCID: PMC9742187 DOI: 10.1016/j.nbt.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 12/27/2022]
Abstract
Advances are needed in the site-directed mutagenesis of large plasmids for protein structure-function studies, as current methods are often inefficient, complicated and time-consuming. Here two new methods are reported that overcome these difficulties, namely the single primer extension reaction (SSPER) strategy that reaches 100% efficiency and the reduce recycle PCR (rrPCR) method that is advantageous in generating single and pairwise combinations of mutations. Both methods are distinguished from current technologies by the addition of a step that easily removes the oligonucleotide primer(s) after the first reaction, thus allowing for the addition of a second reaction in chronological sequence to generate and isolate the appropriate DNA product with the site-directed mutation(s). High efficiency of the methods is demonstrated by generating single and paired combinations of the 11 site-directed mutations targeted on 5 different plasmid DNA templates ranging from 10 to 12 kb and 57-60% GC-content at a rate of 50-100%. Overall, the methods are demonstrated to be (i) highly accurate, allowing for screening of plasmids by DNA sequencing, (ii) streamlined to generate the mutations within a single day, (iii) cost-effective in requiring only two primers and two enzymes (DpnI and a proofreading DNA polymerase), (iv) straightforward in primer design, (v) applicable for both large and small plasmids, and (vi) easily implemented by entry level researchers.
Collapse
Affiliation(s)
- Huiyong Jia
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Ricardo Couto-Rodriguez
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Sharon Johnson
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Stephanie Medina
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Brianna Novillo
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Peter Huynh
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Matt Kim
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Cade Cooper
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Meagan Michalik
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Benjamin Siew
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Elise Turesson
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32608, USA.
| |
Collapse
|
3
|
Ma S, Zhang N, Hou J, Liu S, Wang J, Lu B, Zhu F, Wei P, Hong G, Liu T. Synthesis and Discovery of Ligustrazine–Heterocycle Derivatives as Antitumor Agents. Front Chem 2022; 10:941367. [PMID: 35958230 PMCID: PMC9358002 DOI: 10.3389/fchem.2022.941367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Ligustrazine (TMP) is a natural pyrazine alkaloid extracted from the roots of Ligusticum Chuanxiong Hort, which has the potential as an antitumor agent. A series of 33 ligustrazine–heterocycle (TMPH) derivatives were designed, synthesized, and investigated via antitumor screening assays, molecular docking analysis, and prediction of drug-like properties. TMP was attached to other heterocyclic derivatives by an 8–12 methylene alkyl chain as a linker to obtain 33 TMPH derivatives. The structures were confirmed by 1H-NMR, 13C-NMR, and high-resolution mass spectroscopy spectral (HR-MS) data. The antiproliferative activity against human breast cancer MCF-7, MDA-MB-231, mouse breast cancer 4T1, mouse fibroblast L929, and human umbilical vein endothelial HUVEC cell lines was evaluated by MTT assay. Compound 12–9 displayed significant inhibitory activity with IC50 values in the low micromolar range (0.84 ± 0.02 µM against the MDA-MB-231 cell line). The antitumor effects of compound 12–9 were further evaluated by plate cloning, Hoechst 33 342 staining, and annexin V-FITC/PI staining. The results indicated that compound 12–9 inhibited the proliferation and apoptosis of breast cancer cells. Furthermore, molecular docking of compound 12–9 into the active site of the Bcl-2, CASP-3, and PSMB5 target proteins was performed to explore the probable binding mode. The 33 newly synthesized compounds were predicted to have good drug-like properties in a theoretical study. Overall, these results indicated that compound 12–9 inhibited cell proliferation through PSMB5 and apoptosis through Bcl-2/CASP-3 apoptotic signaling pathways and had good drug-like properties. These results provided more information, and key precursor lead derivatives, in the search for effective bioactive components from Chinese natural medicines.
Collapse
Affiliation(s)
- Shitang Ma
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
- College of Life and Health, Anhui Science and Technology University, Fengyang, China
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin, China
| | - Ning Zhang
- College of Life and Health, Anhui Science and Technology University, Fengyang, China
| | - Jiafu Hou
- Mudanjiang Medical University, Mudanjiang, China
| | - Shijuan Liu
- Mudanjiang Medical University, Mudanjiang, China
| | - Jiawen Wang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin, China
| | - Baowei Lu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Fucheng Zhu
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Peipei Wei
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Ge Hong
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin, China
- *Correspondence: Ge Hong, ; Tianjun Liu,
| | - Tianjun Liu
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin Key Laboratory of Biomedical Material, Tianjin, China
- *Correspondence: Ge Hong, ; Tianjun Liu,
| |
Collapse
|