1
|
Beltrán J, Wurtzel ET. Carotenoids: resources, knowledge, and emerging tools to advance apocarotenoid research. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112298. [PMID: 39442633 DOI: 10.1016/j.plantsci.2024.112298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Carotenoids are a large class of isoprenoid compounds which are biosynthesized by plants, algae, along with certain fungi, bacteria and insects. In plants, carotenoids provide crucial functions in photosynthesis and photoprotection. Furthermore, carotenoids also serve as precursors to apocarotenoids, which are derived through enzymatic and non-enzymatic cleavage reactions. Apocarotenoids encompass a diverse set of compounds, including hormones, growth regulators, and signaling molecules which play vital roles in pathways associated with plant development, stress responses, and plant-organismic interactions. Regulation of carotenoid biosynthesis indirectly influences the formation of apocarotenoids and bioactive effects on target pathways. Recent discovery of a plethora of new bioactive apocarotenoids across kingdoms has increased interest in expanding knowledge of the breadth of apocarotenoid function and regulation. In this review, we provide insights into the regulation of carotenogenesis, specifically linked to the biosynthesis of apocarotenoid precursors. We highlight plant studies, including useful heterologous platforms and synthetic biology tools, which hold great value in expanding discoveries, knowledge and application of bioactive apocarotenoids for crop improvement and human health. Moreover, we discuss how this field has recently flourished with the discovery of diverse functions of apocarotenoids, thereby prompting us to propose new directions for future research.
Collapse
Affiliation(s)
- Jesús Beltrán
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, USA; Delaware Biotechnology Institute, University of Delaware, Newark, DE 19713, USA.
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, City University of New York (CUNY), Bronx, NY, United States; Graduate School and University Center, CUNY, New York, NY, United States.
| |
Collapse
|
2
|
Kanjana N, Ahmed MA, Shen Z, Li Y, Zhang L. Optimization of the determination of volatile organic compounds in plant tissue and soil samples: Untargeted metabolomics of main active compounds. MethodsX 2024; 13:102914. [PMID: 39253006 PMCID: PMC11382208 DOI: 10.1016/j.mex.2024.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
This review critically assesses the determination of low molecular weight volatiles by different methods, providing context for the development of suitable techniques to determine volatile content in plant tissue and soil samples as well as the associated analytical challenges. Although sensitive analytical methods have been reported in recent decades, studies on their application in modern investigative techniques are lacking. Herein, the latest sampling methods in volatile biochemistry, current advancements in the understanding of these analytes, and the significance of these findings for other types of volatiles are summarized. Gas chromatography, high-performance liquid chromatography, ion chromatography, thin-film microextraction, and real-time monitoring techniques are discussed and critically determined. This review concerns the methods most suitable for future research in this area.
Collapse
Affiliation(s)
- Nipapan Kanjana
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Muhammad Afaq Ahmed
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Zhongjian Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yuyan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Lisheng Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, PR China
| |
Collapse
|
3
|
Morote L, Gómez-Gómez L, López-Jimenez A, Ahrazem O, Rubio-Moraga Á. In vitro dioxygenase activity characterization using headspace stir bar sorptive extraction (HSSE). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5733-5740. [PMID: 39139129 DOI: 10.1039/d4ay00827h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
An analytical approach employing headspace sorptive extraction coupled with gas chromatography-mass spectrometry (HSSE-GC-MS) has been successfully developed for the determination of apocarotenoid volatiles arising from the enzymatic activity of carotenoid cleavage enzymes (CCDs) in Escherichia coli. The GjCCD4a enzyme derived from gardenia, known for its cleavage specificity at 7,8 and 7',8' double bonds across diverse carotenoid substrates, was utilized as a reference enzyme, using β-carotene as the substrate for the enzymatic activity assays. Optimal headspace conditions for analysis were established following a 5 hours induction period of the recombinant GjCCD4a protein within E. coli cells, engineered to produce β-carotene. The analytical method demonstrated linearity, with correlation coefficient (R2 > 0.95) in calibration, while achieving detection and quantification limits conducive to the accurate determination of β-cyclocitral. Notably, this methodological framework significantly reduced both the handling complexity and sample processing time in comparison to conventional liquid chromatography methods employed for the detection of cleavage products and determination of CCD activities. The proposed HSSE-GC-MS approach not only enhances the efficiency of apocarotenoid analysis but also provides a sensitive means for unraveling the intricate enzymatic processes associated with CCD-mediated carotenoid cleavage in a bacterial model system.
Collapse
Affiliation(s)
- Lucía Morote
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain.
| | - Lourdes Gómez-Gómez
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain.
- Facultad de Farmacia, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Dr. José Maria Sánchez Ibañez, s/n, Albacete 02071, Spain
| | - Alberto López-Jimenez
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain.
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Oussama Ahrazem
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain.
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| | - Ángela Rubio-Moraga
- Instituto Botánico, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain.
- Escuela Técnica Superior de Ingeniería Agronómica y de Montes y Biotecnología, Departamento de Ciencia y Tecnología Agroforestal y Genética, Universidad de Castilla-La Mancha, Campus Universitario s/n, Albacete 02071, Spain
| |
Collapse
|
4
|
McQuinn RP, Waters MT. Apocarotenoid signals in plant development and beyond. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1131-1133. [PMID: 38345556 DOI: 10.1093/jxb/erae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024]
Affiliation(s)
- Ryan P McQuinn
- School of Science, Western Sydney University, Penrith, NSW 2750, Australia
| | - Mark T Waters
- School of Molecular Sciences, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
5
|
Understanding carotenoid biosynthetic pathway control points using metabolomic analysis and natural genetic variation. Methods Enzymol 2022; 671:127-151. [DOI: 10.1016/bs.mie.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|