1
|
Santomartino R, Averesch NJH, Bhuiyan M, Cockell CS, Colangelo J, Gumulya Y, Lehner B, Lopez-Ayala I, McMahon S, Mohanty A, Santa Maria SR, Urbaniak C, Volger R, Yang J, Zea L. Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms. Nat Commun 2023; 14:1391. [PMID: 36944638 PMCID: PMC10030976 DOI: 10.1038/s41467-023-37070-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 03/01/2023] [Indexed: 03/23/2023] Open
Abstract
Finding sustainable approaches to achieve independence from terrestrial resources is of pivotal importance for the future of space exploration. This is relevant not only to establish viable space exploration beyond low Earth-orbit, but also for ethical considerations associated with the generation of space waste and the preservation of extra-terrestrial environments. Here we propose and highlight a series of microbial biotechnologies uniquely suited to establish sustainable processes for in situ resource utilization and loop-closure. Microbial biotechnologies research and development for space sustainability will be translatable to Earth applications, tackling terrestrial environmental issues, thereby supporting the United Nations Sustainable Development Goals.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| | - Nils J H Averesch
- Department of Civil & Environmental Engineering, Stanford University, Stanford, CA, USA
- Center for Utilization of Biological Engineering in Space, Berkeley, CA, USA
| | | | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | | | - Yosephine Gumulya
- Centre for Microbiome Research, Queensland University of Technology, Brisbane, QLD, Australia
| | | | | | - Sean McMahon
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Anurup Mohanty
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA, 98104, USA
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, India
| | - Sergio R Santa Maria
- Space Biosciences, NASA Ames Research Center, Mountain View, CA, USA
- KBR, Moffett Field, Mountain View, CA, USA
| | - Camilla Urbaniak
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- ZIN Technologies Inc, Middleburg Heights, OH, USA
| | - Rik Volger
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Jiseon Yang
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Luis Zea
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
2
|
Yang J, Barrila J, Mark Ott C, King O, Bruce R, McLean RJC, Nickerson CA. Longitudinal characterization of multispecies microbial populations recovered from spaceflight potable water. NPJ Biofilms Microbiomes 2021; 7:70. [PMID: 34489467 PMCID: PMC8421509 DOI: 10.1038/s41522-021-00240-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 07/28/2021] [Indexed: 12/29/2022] Open
Abstract
While sequencing technologies have revolutionized our knowledge of microbial diversity, little is known about the dynamic emergent phenotypes that arise within the context of mixed-species populations, which are not fully predicted using sequencing technologies alone. The International Space Station (ISS) is an isolated, closed human habitat that can be harnessed for cross-sectional and longitudinal functional microbiome studies. Using NASA-archived microbial isolates collected from the ISS potable water system over several years, we profiled five phenotypes: antibiotic resistance, metabolism, hemolysis, and biofilm structure/composition of individual or multispecies communities, which represent characteristics that could negatively impact astronaut health and life-support systems. Data revealed a temporal dependence on interactive behaviors, suggesting possible microbial adaptation over time within the ecosystem. This study represents one of the most extensive phenotypic characterization of ISS potable water microbiota with implications for microbial risk assessments of water systems in built environments in space and on Earth.
Collapse
Affiliation(s)
- Jiseon Yang
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Jennifer Barrila
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - C Mark Ott
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | - Olivia King
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Department of Infectious Disease, Imperial College London, London, UK
| | - Rebekah Bruce
- Biomedical Research and Environmental Sciences Division, NASA Johnson Space Center, Houston, TX, USA
| | | | - Cheryl A Nickerson
- Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
3
|
Regberg AB, Castro CL, Connolly HC, Davis RE, Dworkin JP, Lauretta DS, Messenger SR, Mclain HL, McCubbin FM, Moore JL, Righter K, Stahl-Rommel S, Castro-Wallace SL. Prokaryotic and Fungal Characterization of the Facilities Used to Assemble, Test, and Launch the OSIRIS-REx Spacecraft. Front Microbiol 2020; 11:530661. [PMID: 33250861 PMCID: PMC7676328 DOI: 10.3389/fmicb.2020.530661] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/30/2020] [Indexed: 01/04/2023] Open
Abstract
To characterize the ATLO (Assembly, Test, and Launch Operations) environment of the OSIRIS-REx spacecraft, we analyzed 17 aluminum witness foils and two blanks for bacterial, archaeal, fungal, and arthropod DNA. Under NASA’s Planetary Protection guidelines, OSIRIS-REx is a Category II outbound, Category V unrestricted sample return mission. As a result, it has no bioburden restrictions. However, the mission does have strict organic contamination requirements to achieve its primary objective of returning pristine carbonaceous asteroid regolith to Earth. Its target, near-Earth asteroid (101955) Bennu, is likely to contain organic compounds that are biologically available. Therefore, it is useful to understand what organisms were present during ATLO as part of the larger contamination knowledge effort—even though it is unlikely that any of the organisms will survive the multi-year deep space journey. Even though these samples of opportunity were not collected or preserved for DNA analysis, we successfully amplified bacterial and archaeal DNA (16S rRNA gene) from 16 of the 17 witness foils containing as few as 7 ± 3 cells per sample. Fungal DNA (ITS1) was detected in 12 of the 17 witness foils. Despite observing arthropods in some of the ATLO facilities, arthropod DNA (COI gene) was not detected. We observed 1,009 bacterial and archaeal sOTUs (sub-operational taxonomic units, 100% unique) and 167 fungal sOTUs across all of our samples (25–84 sOTUs per sample). The most abundant bacterial sOTU belonged to the genus Bacillus. This sOTU was present in blanks and may represent contamination during sample handling or storage. The sample collected from inside the fairing just prior to launch contained several unique bacterial and fungal sOTUs that describe previously uncharacterized potential for contamination during the final phase of ATLO. Additionally, fungal richness (number of sOTUs) negatively correlates with the number of carbon-bearing particles detected on samples. The total number of fungal sequences positively correlates with total amino acid concentration. These results demonstrate that it is possible to use samples of opportunity to characterize the microbiology of low-biomass environments while also revealing the limitations imposed by sample collection and preservation methods not specifically designed with biology in mind.
Collapse
Affiliation(s)
- Aaron B Regberg
- Astromaterials Research and Exploration Science Division, National Aeronautics and Space Administration (NASA) Johnson Space Center, Houston TX, United States
| | | | - Harold C Connolly
- Department of Geology, Rowan University, Glassboro, NJ, United States.,Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, United States
| | - Richard E Davis
- Jacobs@NASA/Johnson Space Center, Houston, TX, United States
| | - Jason P Dworkin
- Astrochemistry Laboratory, Goddard Space Flight Center, Greenbelt, MD, United States
| | - Dante S Lauretta
- Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ, United States
| | - Scott R Messenger
- Astromaterials Research and Exploration Science Division, National Aeronautics and Space Administration (NASA) Johnson Space Center, Houston TX, United States
| | - Hannah L Mclain
- Astrochemistry Laboratory, Goddard Space Flight Center, Greenbelt, MD, United States
| | - Francis M McCubbin
- Astromaterials Research and Exploration Science Division, National Aeronautics and Space Administration (NASA) Johnson Space Center, Houston TX, United States
| | - Jamie L Moore
- Lockheed Martin Space Systems, Littleton, CO, United States
| | - Kevin Righter
- Astromaterials Research and Exploration Science Division, National Aeronautics and Space Administration (NASA) Johnson Space Center, Houston TX, United States
| | | | - Sarah L Castro-Wallace
- Biomedical Research and Environmental Sciences Division, Johnson Space Center, Houston, TX, United States
| |
Collapse
|
4
|
Amalfitano S, Levantesi C, Copetti D, Stefani F, Locantore I, Guarnieri V, Lobascio C, Bersani F, Giacosa D, Detsis E, Rossetti S. Water and microbial monitoring technologies towards the near future space exploration. WATER RESEARCH 2020; 177:115787. [PMID: 32315899 DOI: 10.1016/j.watres.2020.115787] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Space exploration is demanding longer lasting human missions and water resupply from Earth will become increasingly unrealistic. In a near future, the spacecraft water monitoring systems will require technological advances to promptly identify and counteract contingent events of waterborne microbial contamination, posing health risks to astronauts with lowered immune responsiveness. The search for bio-analytical approaches, alternative to those applied on Earth by cultivation-dependent methods, is pushed by the compelling need to limit waste disposal and avoid microbial regrowth from analytical carryovers. Prospective technologies will be selected only if first validated in a flight-like environment, by following basic principles, advantages, and limitations beyond their current applications on Earth. Starting from the water monitoring activities applied on the International Space Station, we provide a critical overview of the nucleic acid amplification-based approaches (i.e., loop-mediated isothermal amplification, quantitative PCR, and high-throughput sequencing) and early-warning methods for total microbial load assessments (i.e., ATP-metry, flow cytometry), already used at a high readiness level aboard crewed space vehicles. Our findings suggest that the forthcoming space applications of mature technologies will be necessarily bounded by a compromise between analytical performances (e.g., speed to results, identification depth, reproducibility, multiparametricity) and detrimental technical requirements (e.g., reagent usage, waste production, operator skills, crew time). As space exploration progresses toward extended missions to Moon and Mars, miniaturized systems that also minimize crew involvement in their end-to-end operation are likely applicable on the long-term and suitable for the in-flight water and microbiological research.
Collapse
Affiliation(s)
- Stefano Amalfitano
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy.
| | - Caterina Levantesi
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy
| | - Diego Copetti
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, Monza-Brianza, Italy
| | - Fabrizio Stefani
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via del Mulino 19, 20861, Brugherio, Monza-Brianza, Italy
| | - Ilaria Locantore
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Vincenzo Guarnieri
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Cesare Lobascio
- Thales Alenia Space Italia SpA, Strada Antica di Collegno, 253 - 10146, Turin, Italy
| | - Francesca Bersani
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., C.so Unità d'Italia 235/3, 10127, Torino, Italy
| | - Donatella Giacosa
- Centro Ricerche SMAT, Società Metropolitana Acque Torino S.p.A., C.so Unità d'Italia 235/3, 10127, Torino, Italy
| | - Emmanouil Detsis
- European Science Foundation, 1 quai Lezay Marnésia, BP 90015, 67080, Strasbourg Cedex, France
| | - Simona Rossetti
- Water Research Institute - National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015, Monterotondo, Roma, Italy
| |
Collapse
|
5
|
Karl JP, Barbato RA, Doherty LA, Gautam A, Glaven SM, Kokoska RJ, Leary D, Mickol RL, Perisin MA, Hoisington AJ, Van Opstal EJ, Varaljay V, Kelley-Loughnane N, Mauzy CA, Goodson MS, Soares JW. Meeting report of the third annual Tri-Service Microbiome Consortium symposium. ENVIRONMENTAL MICROBIOME 2020; 15:12. [PMID: 32835172 PMCID: PMC7356122 DOI: 10.1186/s40793-020-00359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 05/05/2023]
Abstract
The Tri-Service Microbiome Consortium (TSMC) was founded to enhance collaboration, coordination, and communication of microbiome research among U.S. Department of Defense (DoD) organizations and to facilitate resource, material and information sharing among consortium members. The 2019 annual symposium was held 22-24 October 2019 at Wright-Patterson Air Force Base in Dayton, OH. Presentations and discussions centered on microbiome-related topics within five broad thematic areas: 1) human microbiomes; 2) transitioning products into Warfighter solutions; 3) environmental microbiomes; 4) engineering microbiomes; and 5) microbiome simulation and characterization. Collectively, the symposium provided an update on the scope of current DoD microbiome research efforts, highlighted innovative research being done in academia and industry that can be leveraged by the DoD, and fostered collaborative opportunities. This report summarizes the presentations and outcomes of the 3rd annual TSMC symposium.
Collapse
Affiliation(s)
- J. Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Robyn A. Barbato
- United States Army Cold Regions Research and Engineering Laboratory, Hanover, NH USA
| | - Laurel A. Doherty
- Soldier Performance Optimization Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC USA
| | - Robert J. Kokoska
- Physical Sciences Directorate, United States Army Research Laboratory – United States Army Research Office, Research Triangle Park, Durham, NC USA
| | - Dagmar Leary
- Center for Biomolecular Science & Engineering, United States Naval Research Laboratory, Washington, DC USA
| | | | - Matthew A. Perisin
- Biotechnology Branch, United States Army Combat Capabilities Development Command-Army Research Laboratory, Adelphi, MD USA
| | - Andrew J. Hoisington
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Dayton, OH USA
- Military and Veteran Microbiome: Consortium for Research and Education, Aurora, CO USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO USA
- Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Edward J. Van Opstal
- Human Systems Directorate, Office of the Underscretary of Defense for Research & Engineering, Washington, DC USA
| | - Vanessa Varaljay
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Nancy Kelley-Loughnane
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Camilla A. Mauzy
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Michael S. Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Jason W. Soares
- Soldier Performance Optimization Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA USA
| |
Collapse
|