1
|
Rohatgi S, Gundewar S, Nirhale S, Rao P, Naphade P, Oommen AB, Dubey P, Gitay AA, Khandait P. The Intersection of Migraine and Epistaxis: Clinical Observations and Analysis. Cureus 2024; 16:e65584. [PMID: 39192906 PMCID: PMC11349249 DOI: 10.7759/cureus.65584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Migraine prevalence has risen over the last few decades, which may be attributed to lifestyle changes. Epistaxis is unusual in migraine. Here we present a case series of four patients, who are presented with headaches associated with epistaxis. A detailed history revealed cardinal symptoms of migraine according to the International Headache Society, including hemicranial throbbing headache of moderate to severe intensity lasting for a duration of four to 72 hours, along with associated features of nausea, vomiting, photophobia, and phonophobia. Investigations, including ENT (ear, nose, and throat) examination, nasal endoscopy, gastroscopy, bronchoscopy, hematological, and coagulation parameters, were negative. All patients were started on prophylactic treatment for migraine, and they responded well. Epistaxis occurs at the peak of headache following which symptoms tend to resolve. The pathophysiology behind this is stimulation of the trigeminovascular system leading to dilatation of external and internal carotid arteries.
Collapse
Affiliation(s)
- Shalesh Rohatgi
- Department of Neurology, Dr. D Y Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Salil Gundewar
- Department of Neurology, Dr. D Y Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Satish Nirhale
- Department of Neurology, Dr. D Y Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Prajwal Rao
- Department of Neurology, Dr. D Y Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Pravin Naphade
- Department of Neurology, Dr. D Y Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Arun B Oommen
- Department of General Medicine, Dr. D Y Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Prashant Dubey
- Department of Neurology, Dr. D Y Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Advait A Gitay
- Department of Neurology, Dr. D Y Patil Medical College, Hospital and Research Centre, Pune, IND
| | - Pranit Khandait
- Department of Neurology, Dr. D Y Patil Medical College, Hospital and Research Centre, Pune, IND
| |
Collapse
|
2
|
Krajnc N, Frank F, Macher S, Michl M, Müller N, Maier S, Zaic S, Wöber C, Pemp B, Broessner G, Bsteh G. Plasma calcitonin gene-related peptide levels in idiopathic intracranial hypertension: an exploratory study. J Headache Pain 2024; 25:92. [PMID: 38834953 DOI: 10.1186/s10194-024-01799-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Idiopathic intracranial hypertension (IIH) is a debilitating condition characterized by increased intracranial pressure often presenting with chronic migraine-like headache. Calcitonin gene-related peptide (CGRP) plays an important pathophysiological role in primary headaches such as migraine, whilst its role in IIH has not yet been established. METHODS This longitudinal exploratory study included patients with IIH, episodic migraine (EM) in a headache-free interval and healthy controls (HC). Blood samples were collected from a cubital vein and plasma CGRP (pCGRP) levels were measured by standardized ELISA. RESULTS A total of 26 patients with IIH (mean age 33.2 years [SD 9.2], 88.5% female, median BMI 34.8 kg/m2 [IQR 30.0-41.4]), 30 patients with EM (mean age 27.6 years [7.5], 66.7% female) and 57 HC (mean age 25.3 years [5.2], 56.1% female) were included. pCGRP levels displayed a wide variation in IIH as well as in EM and HC on a group-level. Within IIH, those with migraine-like headache had significantly higher pCGRP levels than those with non-migraine-like headache (F(2,524) = 84.79; p < 0.001) and headache absence (F(2,524) = 84.79; p < 0.001) throughout the observation period, explaining 14.7% of the variance in pCGRP levels. CGRP measurements showed strong intraindividual agreement in IIH (ICC 0.993, 95% CI 0.987-0.996, p < 0.001). No association was found between pCGRP levels and ophthalmological parameters. CONCLUSIONS Although interindividual heterogeneity of pCGRP levels is generally high, migraine-like headache seems to be associated with higher pCGRP levels. CGRP may play a role in the headache pathophysiology at least in a subgroup of IIH.
Collapse
Affiliation(s)
- Nik Krajnc
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Florian Frank
- Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria
| | - Stefan Macher
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Martin Michl
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Nina Müller
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Sarah Maier
- Institute of Medical Statistics and Informatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Sina Zaic
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Christian Wöber
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Berthold Pemp
- Department of Ophthalmology, Medical University of Vienna, Vienna, Austria
| | - Gregor Broessner
- Department of Neurology, Headache Outpatient Clinic, Medical University of Innsbruck, Anichstrasse 35, Innsbruck, 6020, Austria.
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Tao J, Wang X, Xu J. Expression of CGRP in the Trigeminal Ganglion and Its Effect on the Polarization of Macrophages in Rats with Temporomandibular Arthritis. Cell Mol Neurobiol 2024; 44:22. [PMID: 38363424 PMCID: PMC10873438 DOI: 10.1007/s10571-024-01456-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Calcitonin gene-related peptide (CGRP) is synthesized and secreted by trigeminal ganglion neurons, and is a key neuropeptide involved in pain and immune regulation. This study investigates the expression of CGRP in the trigeminal ganglion (TG) and its regulatory role in the polarization of macrophages in rats with temporomandibular arthritis. A rat model of temporomandibular arthritis was established using CFA. Pain behavior was then observed. Temporomandibular joint (TMJ) and the TG were collected, and immunohistochemistry, immunofluorescence (IF) staining, and RT-qPCR were used to examine the expression of CGRP and macrophage-related factors. To investigate the impact of CGRP on macrophage polarization, both CGRP and its antagonist, CGRP 8-37, were separately administered directly within the TG. Statistical analysis revealed that within 24 h of inducing temporomandibular arthritis using CFA, there was a significant surge in CD86 positive macrophages within the ganglion. These macrophages peaked on the 7th day before beginning their decline. In this context, it's noteworthy that administering CGRP to the trigeminal ganglion can prompt these macrophages to adopt the M2 phenotype. Intriguingly, this study demonstrates that injecting the CGRP receptor antagonist (CGRP 8-37) to the ganglion counteracts this shift towards the M2 phenotype. Supporting these in vivo observations, we found that in vitro, CGRP indeed fosters the M2-type polarization of macrophages. CGRP can facilitate the conversion of macrophages into the M2 phenotype. The phenotypic alterations of macrophages within the TG could be instrumental in initiating and further driving the progression of TMJ disorders.
Collapse
Affiliation(s)
- Junli Tao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaohui Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jie Xu
- College of Stomatology, Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China.
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
4
|
Ramachanderan R, Schramm S, Schaefer B. Migraine drugs. CHEMTEXTS 2023. [DOI: 10.1007/s40828-023-00178-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
AbstractAccording to recent studies, migraine affects more than 1 billion people worldwide, making it one of the world’s most prevalent diseases. Although this highly debilitating illness has been known since ancient times, the first therapeutic drugs to treat migraine, ergotamine (Gynergen) and dihydroergotamine (Dihydergot), did not appear on the market until 1921 and 1946, respectively. Both drugs originated from Sandoz, the world’s leading pharmaceutical company in ergot alkaloid research at the time. Historically, ergot alkaloids had been primarily used in obstetrics, but with methysergide (1-methyl-lysergic acid 1′-hydroxy-butyl-(2S)-amide), it became apparent that they also held some potential in migraine treatment. Methysergide was the first effective prophylactic drug developed specifically to prevent migraine attacks in 1959. On the basis of significantly improved knowledge of migraine pathophysiology and the discovery of serotonin and its receptors, Glaxo was able to launch sumatriptan in 1992. It was the first member from the class of triptans, which are selective 5-HT1B/1D receptor agonists. Recent innovations in acute and preventive migraine therapy include lasmiditan, a selective 5-HT1F receptor agonist from Eli Lilly, the gepants, which are calcitonin gene-related peptide (CGRP) receptor antagonists discovered at Merck & Co and BMS, and anti-CGRP/receptor monoclonal antibodies from Amgen, Pfizer, Eli Lilly, and others.
Graphical abstract
Collapse
|
5
|
Liu Y, Yang G, Cui W, Zhang Y, Liang X. Regulatory mechanisms of tetramethylpyrazine on central nervous system diseases: A review. Front Pharmacol 2022; 13:948600. [PMID: 36133805 PMCID: PMC9483103 DOI: 10.3389/fphar.2022.948600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Central nervous system (CNS) diseases can lead to motor, sensory, speech, cognitive dysfunction, and sometimes even death. These diseases are recognized to cause a substantial socio-economic impact on a global scale. Tetramethylpyrazine (TMP) is one of the main active ingredients extracted from the Chinese herbal medicine Ligusticum striatum DC. (Chuan Xiong). Many in vivo and in vitro studies have demonstrated that TMP has a certain role in the treatment of CNS diseases through inhibiting calcium ion overload and glutamate excitotoxicity, anti-oxidative/nitrification stress, mitigating inflammatory response, anti-apoptosis, protecting the integrity of the blood-brain barrier (BBB) and facilitating synaptic plasticity. In this review, we summarize the roles and mechanisms of action of TMP on ischemic cerebrovascular disease, spinal cord injury, Parkinson’s disease, Alzheimer’s disease, cognitive impairments, migraine, and depression. Our review will provide new insights into the clinical applications of TMP and the development of novel therapeutics.
Collapse
Affiliation(s)
- Yue Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenqiang Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunling Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yunling Zhang, ; Xiao Liang,
| | - Xiao Liang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yunling Zhang, ; Xiao Liang,
| |
Collapse
|
6
|
Kamm K. CGRP and Migraine: What Have We Learned From Measuring CGRP in Migraine Patients So Far? Front Neurol 2022; 13:930383. [PMID: 35968305 PMCID: PMC9363780 DOI: 10.3389/fneur.2022.930383] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
The multi-functional neuropeptide calcitonin gene-related peptide (CGRP) plays a major role in the pathophysiology of migraine. The detection of elevated CGRP levels during acute migraine headache was the first evidence of the importance of the peptide. Since then, elevated CGRP levels have been detected not only during spontaneous and experimentally induced migraine attacks but also interictally. However, the detection of CGRP in peripheral blood shows conflicting results. In this respect, alternative detection methods are needed and have been already proposed. This article summarizes what we have learned from studies investigating CGRP in jugular and peripheral blood and reviews the latest state of research concerning the detection of CGRP in saliva and tear fluid as well as their contribution to our understanding of migraine pathophysiology.
Collapse
|
7
|
CGRP: A New Endogenous Cell Stemness Maintenance Molecule. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4107433. [PMID: 35132349 PMCID: PMC8817839 DOI: 10.1155/2022/4107433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Stem cells have the ability of self-replication and multidirectional differentiation, but the mechanism of how stem cells “maintain” this ability and how to “decide” to give up this state and differentiate into cells with specific functions is still unknown. The Nobel Prize in physiology and medicine in 2021 was awarded to “temperature and tactile receptor,” which made the pain receptor TRPV1-calcitonin gene-related peptide (CGRP) pathway active again. The activation and blocking technology of CGRP has been applied to many clinical diseases. CGRP gene has complex structure and transcription process, with multiple methylation and other modification sites. It has been considered as a research hotspot and difficulty since its discovery. Drug manipulation of TRPV1 and inhibition of CGRP might improve metabolism and prolong longevity. However, whether the TRPV1-neuropeptide-CGRP pathway is directly or indirectly involved in stem cell self-replication and multidirectional differentiation is unclear. Recent studies have found that CGRP is closely related to the migration and differentiation of tumor stem cells, which may be realized by turning off or turning on the CGRP gene expression in stem cells and activating a variety of ways to regulate stem cell niches. In this study, we reviewed the advances in researches concentrated on the biological effects of CGRP as a new endogenous switching of cell stemness.
Collapse
|
8
|
Li H, Bai F, Cong C, Chen B, Xie W, Li S, Liu Q, Chen C, Wu Y. Effects of ligustrazine on the expression of neurotransmitters in the trigeminal ganglion of a rat migraine model. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1318. [PMID: 34532455 PMCID: PMC8422085 DOI: 10.21037/atm-21-3423] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/12/2021] [Indexed: 11/06/2022]
Abstract
Background Migraine is one of the most common neurological diseases which has been treated by active substances from traditional Chinese medicine (TCM), such as ligustrazine, an extract of the Chinese herb Chuanxiong. However, the pathogenesis of migraine and the curative mechanisms of ligustrazine have remained unclear. The genes P2X3, TRPV1, ERK, and c-fos have been implicated to play a role. In this work, we attempted to elucidate the analgesic mechanism of ligustrazine using a classic migraine-representative rat model. Methods The migraine rat model was established by administration of nitroglycerin (NTG). Ligustrazine treatment was administered by intravenous injection. The animal's behavior was continuously recorded, and then trigeminal ganglions (TGs) were isolated. Total RNA was extracted from cells and total protein was extracted from TG. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the levels of P2X3, TRPV1, c-Fos, and ERK in TG. Results Ligustrazine could reduce the neurological activities of NTG-induced migraine rats. The rats TG nerve showed varying degrees of expression of P2X3, TRPV1, c-Fos and ERK expression element. Ligustrazine could inhibit over-expression of P2X3, TRPV1, c-fos, and ERK in the TG nerve of NTG-induced migraine rats. Conclusions Our results demonstrated that ligustrazine had potent activity against NTG-induced migraine rats through inhibition of the c-fos/ERK signaling pathway. This work may provide a comprehensive basis for a better understanding of the pathogenesis of migraine and the curative mechanisms of ligustrazine.
Collapse
Affiliation(s)
- Hui Li
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| | - Fanghui Bai
- Henan Provincial Key Laboratory of Stroke Prevention and Treatment, Nanyang Central Hospital, Nanyang, China
| | - Cong Cong
- Department of Cardiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Baotian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wei Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shasha Li
- Department of Pharmacy, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chaojun Chen
- Department of Neurology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, China
| | - Yanhua Wu
- Department of Traditional Chinese Medicine, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, China
| |
Collapse
|