1
|
Chuikova ZV, Filatov AA, Faber AY, Arsalidou M. Mapping common and distinct brain correlates among cognitive flexibility tasks: concordant evidence from meta-analyses. Brain Imaging Behav 2025; 19:50-71. [PMID: 39467932 PMCID: PMC11846771 DOI: 10.1007/s11682-024-00921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2024] [Indexed: 10/30/2024]
Abstract
Cognitive flexibility allows individuals to switch between different tasks, strategies, or ideas; an ability that is important for everyday life. The Wisconsin card sorting test (WCST) and task switching paradigm (TSP) are popular measures of cognitive flexibility. Although both tasks require switching, the TSP requires participants to memorize switching rules and retrieve them when they view a cue (rule-retrieval), whereas the classic WCST requires participants to discover the switching rule via trial-and-error (rule-discovery). Many functional magnetic resonance imaging studies have examined brain responses to these tasks. Extant meta-analyses show concordance in activation in a widespread set of areas including frontal, parietal, and cingulate cortices. Critically, past meta-analyses have not specifically examined brain correlates associated with rule derivation (i.e., rule-discovery vs. rule-retrieval) in cognitive flexibility tasks. We examine for the first time common and distinct concordance in brain responses to rule-discovery (i.e., WCST) and rule-retrieval (i.e., TSP), as well as TSP subtypes using quantitative meta-analyses. We analyzed data from 69 eligible articles with a total of 1617 young-adult participants. Conjunction results show concordance in common fronto-parietal areas predominantly in the left hemisphere. Contrast analyses show that rule-discovery required increased involvement in multiple cortical and subcortical regions such as frontopolar (Brodmann Area 10), parietal, insular cortex, thalamus and caudate nucleus predominantly in the right hemisphere. No significant differences in concordance were observed among the three, task switching paradigm sub-types. We propose a neuroanatomical model of cognitive flexibility and discuss theoretical and practical applications.
Collapse
Affiliation(s)
- Zhanna V Chuikova
- Centre for Cognition and Decision making, Institute for Cognitive Neuroscience, HSE University, Moscow, Russian Federation.
- Department of Pedagogy and Medical Psychology, Sechenov University, Moscow, Russian Federation.
| | - Andrei A Filatov
- Laboratory for Cognitive Research, School of Psychology, Faculty of Social Sciences, HSE University, Moscow, Russian Federation
| | - Andrei Y Faber
- Laboratory for Cognitive Research, School of Psychology, Faculty of Social Sciences, HSE University, Moscow, Russian Federation
| | - Marie Arsalidou
- York University, Toronto, Canada.
- NeuroPsyLab.com, Toronto, Canada.
| |
Collapse
|
2
|
Zainaee S, Archer B, Scherer R, Bingman V, Ghasemi M. Revealing Goal-Directed Neural Control of the Pharyngeal Phase of Swallowing. Dysphagia 2024:10.1007/s00455-024-10758-3. [PMID: 39387924 DOI: 10.1007/s00455-024-10758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024]
Abstract
Swallowing is considered a three-phase mechanism involving the oral, pharyngeal, and esophageal phases. The pharyngeal phase relies on highly coordinated movements in the pharynx and larynx to move food through the aerodigestive crossing. While the brainstem has been identified as the primary control center for the pharyngeal phase of swallowing, existing evidence suggests that the higher brain regions can contribute to controlling the pharyngeal phase of swallowing to match the motor response to the current context and task at hand. This suggests that the pharyngeal phase of swallowing cannot be exclusively reflexive or voluntary but can be regulated by the two neural controlling systems, goal-directed and non-goal-directed. This capability allows the pharyngeal phase of swallowing to adjust appropriately based on cognitive input, learned knowledge, and predictions. This paper reviews existing evidence and accordingly develops a novel perspective to explain these capabilities of the pharyngeal phase of swallowing. This paper aims (1) to integrate and comprehend the neurophysiological mechanisms involved in the pharyngeal phase of swallowing, (2) to explore the reflexive (non-goal-directed) and voluntary (goal-directed) neural systems of controlling the pharyngeal phase of swallowing, (3) to provide a clinical translation regarding the pathologies of these two systems, and (4) to highlight the existing gaps in this area that require attention in future research. This paper, in particular, aims to explore the complex neurophysiology of the pharyngeal phase of swallowing, as its breakdown can lead to serious consequences such as aspiration pneumonia or death.
Collapse
Affiliation(s)
- Shahryar Zainaee
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA.
| | - Brent Archer
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| | - Ronald Scherer
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| | - Verner Bingman
- Department of Psychology, J. P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, 43403, USA
| | - Mehran Ghasemi
- Department of Communication Sciences and Disorders, College of Health and Human Services, Bowling Green State University, Bowling Green, OH, USA
| |
Collapse
|
3
|
Mahoney HL, Schmidt TM. The cognitive impact of light: illuminating ipRGC circuit mechanisms. Nat Rev Neurosci 2024; 25:159-175. [PMID: 38279030 DOI: 10.1038/s41583-023-00788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/28/2024]
Abstract
Ever-present in our environments, light entrains circadian rhythms over long timescales, influencing daily activity patterns, health and performance. Increasing evidence indicates that light also acts independently of the circadian system to directly impact physiology and behaviour, including cognition. Exposure to light stimulates brain areas involved in cognition and appears to improve a broad range of cognitive functions. However, the extent of these effects and their mechanisms are unknown. Intrinsically photosensitive retinal ganglion cells (ipRGCs) have emerged as the primary conduit through which light impacts non-image-forming behaviours and are a prime candidate for mediating the direct effects of light on cognition. Here, we review the current state of understanding of these effects in humans and mice, and the tools available to uncover circuit-level and photoreceptor-specific mechanisms. We also address current barriers to progress in this area. Current and future efforts to unravel the circuits through which light influences cognitive functions may inform the tailoring of lighting landscapes to optimize health and cognitive function.
Collapse
Affiliation(s)
- Heather L Mahoney
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| | - Tiffany M Schmidt
- Department of Neurobiology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
4
|
McKewen M, Cooper PS, Skippen P, Wong ASW, Michie PT, Karayanidis F. Dissociable theta networks underlie the switch and mixing costs during task switching. Hum Brain Mapp 2021; 42:4643-4657. [PMID: 34184803 PMCID: PMC8410519 DOI: 10.1002/hbm.25573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
During task‐switching paradigms, both event‐related potentials and time‐frequency analyses show switch and mixing effects at frontal and parietal sites. Switch and mixing effects are associated with increased power in broad frontoparietal networks, typically stronger in the theta band (~4–8 Hz). However, it is not yet known whether mixing and switch costs rely upon common or distinct networks. In this study, we examine proactive and reactive control networks linked to task switching and mixing effects, and whether strength of connectivity in these networks is associated with behavioural outcomes. Participants (n = 197) completed a cued‐trials task‐switching paradigm with concurrent electroencephalography, after substantial task practice to establish strong cue‐stimulus–response representations. We used inter‐site phase clustering, a measure of functional connectivity across electrode sites, to establish cross‐site connectivity from a frontal and a parietal seed. Distinct theta networks were activated during proactive and reactive control periods. During the preparation interval, mixing effects were associated with connectivity from the frontal seed to parietal sites, and switch effects with connectivity from the parietal seed to occipital sites. Lateralised occipital connectivity was common to both switch and mixing effects. After target onset, frontal and parietal seeds showed a similar pattern of connectivity across trial types. These findings are consistent with distinct and common proactive control networks and common reactive networks in highly practised task‐switching performers.
Collapse
Affiliation(s)
- Montana McKewen
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia
| | - Patrick S Cooper
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Patrick Skippen
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, New South Wales, Australia.,Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Aaron S W Wong
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia
| | - Patricia T Michie
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Frini Karayanidis
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|