1
|
Lehtimäki J, Jalava N, Unkila K, Aspegren J, Haapalinna A, Pesonen U. Tasipimidine-the pharmacological profile of a novel orally active selective α 2A-adrenoceptor agonist. Eur J Pharmacol 2022; 923:174949. [PMID: 35405115 DOI: 10.1016/j.ejphar.2022.174949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/05/2022] [Indexed: 11/03/2022]
Abstract
The pharmacological profile of tasipimidine, a novel orally active α2-adrenoceptor agonist developed for situational anxiety and fear in dogs, was studied in various in vitro and in vivo models. In the cell assays, tasipimidine demonstrated binding affinity and full agonism on the human α2A-adrenoceptors with a pEC50 of 7.57, while agonism on the α2B-and α2C-adrenoceptors and the rodent α2D-adrenoceptor was weaker, resulting in pEC50 values of 6.00, 6.29 and 6.56, respectively. Tasipimidine had a low binding affinity on the human α1-adrenoceptors. It had no functional effects in the LNCaP cells expressing endogenously the human α1A-adrenoceptors but was a weak agonist in the Chem-1 cells coexpressing Gα15 protein and α1A-adrenoceptors. In the recombinant CHO cells, although tasipimidine was a weak partial agonist in the inositol monophosphate accumulation assay, it was a full agonist in the intracellular [Ca2+] assay. No functional effects were observed on the human α1B-adrenoceptor, whereas in the rat α1A and α1B-adrenoceptors, tasipimidine was a weak partial agonist. In the rat vas deferens preparations, tasipimidine was a full agonist on the α2D-adrenoceptor but weak partial agonist on the α1-adrenoceptor. The receptor profile of tasipimidine indicated few secondary targets, and no functional effects were observed. Sedative effects of tasipimidine were demonstrated in vivo by the reduced acoustic startle reflex in rats with subcutaneous doses and decreased spontaneous locomotor activity in mice with subcutaneous and higher oral doses. It may be concluded that tasipimidine is an orally active and selective α2A-adrenoceptor agonist.
Collapse
Affiliation(s)
- Jyrki Lehtimäki
- Orion Corporation Orion Pharma, R&D, P.O. Box 425, FI-20101, Turku, Finland.
| | - Niina Jalava
- Orion Corporation Orion Pharma, R&D, P.O. Box 425, FI-20101, Turku, Finland
| | - Kaisa Unkila
- Orion Corporation Orion Pharma, R&D, P.O. Box 425, FI-20101, Turku, Finland
| | - John Aspegren
- Orion Corporation Orion Pharma, R&D, P.O. Box 425, FI-20101, Turku, Finland
| | - Antti Haapalinna
- Orion Corporation Orion Pharma, R&D, P.O. Box 425, FI-20101, Turku, Finland
| | - Ullamari Pesonen
- Institute of Biomedicine, Faculty of Medicine, University of Turku, Kiinamyllynkatu 10, FI-20520, Turku, Finland
| |
Collapse
|
2
|
Ogunlade B, Guidry JJ, Mukerjee S, Sriramula S, Lazartigues E, Filipeanu CM. The Actin Bundling Protein Fascin-1 as an ACE2-Accessory Protein. Cell Mol Neurobiol 2022; 42:255-263. [PMID: 32865675 PMCID: PMC7456754 DOI: 10.1007/s10571-020-00951-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/20/2020] [Indexed: 01/02/2023]
Abstract
We have previously shown that angiotensin-converting enzyme 2 (ACE2), an enzyme counterbalancing the deleterious effects of angiotensin type 1 receptor activation by production of vasodilatory peptides Angiotensin (Ang)-(1-9) and Ang-(1-7), is internalized and degraded in lysosomes following chronic Ang-II treatment. However, the molecular mechanisms involved in this effect remain unknown. In an attempt to identify the accessory proteins involved in this effect, we conducted a proteomic analysis in ACE2-transfected HEK293T cells. A single protein, fascin-1, was found to differentially interact with ACE2 after Ang-II treatment for 4 h. The interactions between fascin-1 and ACE2 were confirmed by confocal microscopy and co-immunoprecipitation. Overexpression of fascin-1 attenuates the effects of Ang-II on ACE2 activity. In contrast, downregulation of fascin-1 severely decreased ACE2 enzymatic activity. Interestingly, in brain homogenates from hypertensive mice, we observed a significant reduction of fascin-1, suggesting that the levels of this protein may change in cardiovascular diseases. In conclusion, we identified fascin-1 as an ACE2-accessory protein, interacting with the enzyme in an Ang-II dependent manner and contributing to the regulation of enzyme activity.
Collapse
Affiliation(s)
- Blessing Ogunlade
- Department of Pharmacology, College of Medicine, Howard University, 520 W St., NW, Washington, DC, 20059, USA
| | - Jessie J Guidry
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Snigdha Mukerjee
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
| | - Srinivas Sriramula
- Department of Pharmacology and Toxicology, Brody School of Medicine at East Carolina University, 600 Moye Blvd, Greenville, NC, 27834, USA
| | - Eric Lazartigues
- Department of Pharmacology & Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA, 70112, USA
- Southeast Louisiana Veterans Health Care Systems, New Orleans, LA, 70119, USA
| | - Catalin M Filipeanu
- Department of Pharmacology, College of Medicine, Howard University, 520 W St., NW, Washington, DC, 20059, USA.
| |
Collapse
|
3
|
Chen X, Xu Y, Qu L, Wu L, Han GW, Guo Y, Wu Y, Zhou Q, Sun Q, Chu C, Yang J, Yang L, Wang Q, Yuan S, Wang L, Hu T, Tao H, Sun Y, Song Y, Hu L, Liu ZJ, Stevens RC, Zhao S, Wu D, Zhong G. Molecular Mechanism for Ligand Recognition and Subtype Selectivity of α 2C Adrenergic Receptor. Cell Rep 2020; 29:2936-2943.e4. [PMID: 31801061 DOI: 10.1016/j.celrep.2019.10.112] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/23/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022] Open
Abstract
Adrenergic G-protein-coupled receptors (GPCRs) mediate different cellular signaling pathways in the presence of endogenous catecholamines and play important roles in both physiological and pathological conditions. Extensive studies have been carried out to investigate the structure and function of β adrenergic receptors (βARs). However, the structure of α adrenergic receptors (αARs) remains to be determined. Here, we report the structure of the human α2C adrenergic receptor (α2CAR) with the non-selective antagonist, RS79948, at 2.8 Å. Our structure, mutations, modeling, and functional experiments indicate that a α2CAR-specific D206ECL2-R409ECL3-Y4056.58 network plays a role in determining α2 adrenergic subtype selectivity. Furthermore, our results show that a specific loosened helix at the top of TM4 in α2CAR is involved in receptor activation. Together, our structure of human α2CAR-RS79948 provides key insight into the mechanism underlying the α2 adrenergic receptor activation and subtype selectivity.
Collapse
Affiliation(s)
- Xiaoyu Chen
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Xu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Lu Qu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Gye Won Han
- Departments of Biological Sciences and Chemistry, Bridge Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Yu Guo
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Qingtong Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Qianqian Sun
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Cenfeng Chu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Yang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liu Yang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quan Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Laboratory of Biomodelling, Faculty of Chemistry & Biological and Chemical Research Centre, University of Warsaw, 02-093 Warsaw, Poland
| | - Ling Wang
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Tao Hu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China
| | - Yaping Sun
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai), Shanghai 201210, China
| | - Yunpeng Song
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai), Shanghai 201210, China
| | - Liaoyuan Hu
- Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai), Shanghai 201210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Dong Wu
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
4
|
Ignatova VV, Jansen PWTC, Baltissen MP, Vermeulen M, Schneider R. The interactome of a family of potential methyltransferases in HeLa cells. Sci Rep 2019; 9:6584. [PMID: 31036863 PMCID: PMC6488577 DOI: 10.1038/s41598-019-43010-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 04/11/2019] [Indexed: 12/13/2022] Open
Abstract
Human methytransferase like proteins (METTL) are part of a large protein family characterized by the presence of binding domains for S-adenosyl methionine, a co-substrate for methylation reactions. Despite the fact that members of this protein family were shown or predicted to be DNA, RNA or protein methyltransferases, most METTL proteins are still poorly characterized. Identification of complexes in which these potential enzymes act could help to understand their function(s) and substrate specificities. Here we systematically studied interacting partners of METTL protein family members in HeLa cells using label-free quantitative mass spectrometry. We found that, surprisingly, many of the METTL proteins appear to function outside of stable complexes whereas others including METTL7B, METTL8 and METTL9 have high-confidence interaction partners. Our study is the first systematic and comprehensive overview of the interactome of METTL protein family that can provide a crucial resource for further studies of these potential novel methyltransferases.
Collapse
Affiliation(s)
- Valentina V Ignatova
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Deutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH) Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| | - Pascal W T C Jansen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 30, 6525 GA, Nijmegen, The Netherlands
| | - Marijke P Baltissen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 30, 6525 GA, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Oncode Institute, Radboud University Nijmegen, Geert Grooteplein 30, 6525 GA, Nijmegen, The Netherlands.
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum München, Deutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH) Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany.
| |
Collapse
|