1
|
Zheng C, Nguyen KK, Vishnivetskiy SA, Gurevich VV, Gurevich EV. Arrestin-3 binds parkin and enhances parkin-dependent mitophagy. J Neurochem 2025; 169:e16043. [PMID: 38196269 PMCID: PMC11231064 DOI: 10.1111/jnc.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Arrestins were discovered for their role in homologous desensitization of G-protein-coupled receptors (GPCRs). Later non-visual arrestins were shown to regulate several signaling pathways. Some of these pathways require arrestin binding to GPCRs, the regulation of others is receptor independent. Here, we demonstrate that arrestin-3 binds the E3 ubiquitin ligase parkin via multiple sites, preferentially interacting with its RING0 domain. Identification of the parkin domains involved suggests that arrestin-3 likely relieves parkin autoinhibition and/or stabilizes the enzymatically active "open" conformation of parkin. Arrestin-3 binding enhances ubiquitination by parkin of the mitochondrial protein mitofusin-1 and facilitates parkin-mediated mitophagy in HeLa cells. Furthermore, arrestin-3 and its mutant with enhanced parkin binding rescue mitofusin-1 ubiquitination and mitophagy in the presence of the Parkinson's disease-associated R275W parkin mutant, which is defective in both functions. Thus, modulation of parkin activity via arrestin-3 might be a novel strategy of anti-parkinsonian therapy.
Collapse
Affiliation(s)
- Chen Zheng
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin K. Nguyen
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
2
|
Shenoy SK, Grimsey NJ, Piper RC. Editorial: Regulation of hormone and growth factor signalling by ubiquitin and ubiquitin-like protein modifications. Front Endocrinol (Lausanne) 2024; 15:1397685. [PMID: 38586453 PMCID: PMC10995326 DOI: 10.3389/fendo.2024.1397685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024] Open
Affiliation(s)
- Sudha K. Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Cell Biology, Duke University Medical Center, Durham, NC, United States
| | - Neil J. Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, United States
| | - Robert C. Piper
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
3
|
Yun Y, Yoon HJ, Jeong Y, Choi Y, Jang S, Chung KY, Lee HH. GPCR targeting of E3 ubiquitin ligase MDM2 by inactive β-arrestin. Proc Natl Acad Sci U S A 2023; 120:e2301934120. [PMID: 37399373 PMCID: PMC10334748 DOI: 10.1073/pnas.2301934120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 07/05/2023] Open
Abstract
E3 ubiquitin ligase Mdm2 facilitates β-arrestin ubiquitination, leading to the internalization of G protein-coupled receptors (GPCRs). In this process, β-arrestins bind to Mdm2 and recruit it to the receptor; however, the molecular architecture of the β-arrestin-Mdm2 complex has not been elucidated yet. Here, we identified the β-arrestin-binding region (ABR) on Mdm2 and solved the crystal structure of β-arrestin1 in complex with Mdm2ABR peptide. The acidic residues of Mdm2ABR bind to the positively charged concave side of the β-arrestin1 N-domain. The C-tail of β-arrestin1 is still bound to the N-domain, indicating that Mdm2 binds to the inactive state of β-arrestin1, whereas the phosphorylated C-terminal tail of GPCRs binds to activate β-arrestins. The overlapped binding site of Mdm2 and GPCR C-tails on β-arrestin1 suggests that the binding of GPCR C-tails might trigger the release of Mdm2. Moreover, hydrogen/deuterium exchange experiments further show that Mdm2ABR binding to β-arrestin1 induces the interdomain interface to be more dynamic and uncouples the IP6-induced oligomer of β-arrestin1. These results show how the E3 ligase, Mdm2, interacts with β-arrestins to promote the internalization of GPCRs.
Collapse
Affiliation(s)
- Yaejin Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Yejin Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul05006, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
4
|
Kaur S, Sokrat B, Capozzi ME, El K, Bai Y, Jazic A, Han B, Krishnakumar K, D'Alessio DA, Campbell JE, Bouvier M, Shenoy SK. The Ubiquitination Status of the Glucagon Receptor determines Signal Bias. J Biol Chem 2023; 299:104690. [PMID: 37037304 DOI: 10.1016/j.jbc.2023.104690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/03/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
The pancreatic hormone glucagon activates the glucagon receptor (GCGR), a class B seven-transmembrane G protein-coupled receptor (GPCR) that couples to the stimulatory heterotrimeric Gs protein and provokes protein kinase A-dependent signaling cascades vital to hepatic glucose metabolism and islet insulin secretion. Glucagon-stimulation also initiates recruitment of the endocytic adaptors, β-arrestin1 and β-arrestin2, which regulate desensitization and internalization of the GCGR. Unlike many other GPCRs, the GCGR expressed at the plasma membrane is constitutively ubiquitinated and upon agonist-activation, internalized GCGRs are deubiquitinated at early endosomes and recycled via Rab4-containing vesicles. Herein we report a novel link between the ubiquitination status and signal transduction mechanism of the GCGR. In the deubiquitinated state, coupling of the GCGR to Gs is diminished, while binding to β-arrestin is enhanced with signaling biased to a β-arrestin1-dependent p38 mitogen activated protein kinase (MAPK) pathway. This ubiquitin-dependent signaling bias arises through the modification of lysine333 (K333) on the cytoplasmic face of transmembrane helix V. Compared with the GCGR-WT, the mutant GCGR-K333R has impaired ubiquitination, diminished G protein coupling and protein kinase A signaling, but unimpaired potentiation of glucose-stimulated-insulin secretion in response to agonist-stimulation, which involves p38 MAPK signaling. Both WT and GCGR-K333R promote the formation of glucagon-induced β-arrestin1-dependent p38 signaling scaffold that requires canonical upstream MAPK-Kinase3, but is independent of Gs, Gi and β-arrestin2. Thus ubiquitination/deubiquitination at K333 in the GCGR defines the activation of distinct transducers with the potential to influence various facets of glucagon signaling in health and disease.
Collapse
Affiliation(s)
- Suneet Kaur
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Badr Sokrat
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4 Canada; Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Megan E Capozzi
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Kimberley El
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Yushi Bai
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Aeva Jazic
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Bridgette Han
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Kaavya Krishnakumar
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford CA 94305
| | - David A D'Alessio
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Jonathan E Campbell
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, H3T 1J4 Canada; Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec, H3T 1J4 Canada
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
5
|
Yan CH, Liu HW, Tian XX, Li J, Ding Y, Li Y, Mei Z, Zou MH, Han YL. AMPKα2 controls the anti-atherosclerotic effects of fish oils by modulating the SUMOylation of GPR120. Nat Commun 2022; 13:7721. [PMID: 36513627 PMCID: PMC9747961 DOI: 10.1038/s41467-022-34996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
Consuming fish oils (FO) is linked to reduced risk of cardiovascular disease in certain populations. However, FO failed to exhibit therapeutic effects in some patients with cardiovascular disease. This study aimed to determine the possible reasons for the inconsistent effects of FO. AMP-activated protein kinase (AMPK) α2 is an important energy metabolic sensor, which was reported to involve in FO mediated regulation of lipid and glucose metabolism. In an in vivo study, FO administration significantly reduced the aortic lesions and inflammation in the Ldlr-/- mouse model of atherosclerosis, but not in Ldlr-/-/Prkaa2-/-and Ldlr-/-/Prkaa2-/-Sm22Cre mice. Mechanistically, inactivation of AMPKα2 increased the SUMOylation of the fatty acid receptor GPR120 to block FO-induced internalization and binding to β-arrestin. In contrast, activation of AMPKα2 can phosphorylate the C-MYC at Serine 67 to inhibit its trans-localization into the nuclei and transcription of SUMO-conjugating E2 enzyme UBC9 and SUMO2/3 in vascular smooth muscle cells (VSMCs), which result in GPR120 SUMOylation. In human arteries, AMPKα2 levels were inversely correlated with UBC9 expression. In a cohort of patients with atherosclerosis, FO concentrations did not correlate with atherosclerotic severity, however, in a subgroup analysis a negative correlation between FO concentrations and atherosclerotic severity was found in patients with higher AMPKα2 levels. These data indicate that AMPKα2 is required for the anti-inflammatory and anti-atherosclerotic effects of FO.
Collapse
Affiliation(s)
- Cheng-hui Yan
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| | - Hai-Wei Liu
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| | - Xiao-xiang Tian
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| | - Jiayin Li
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| | - Ye Ding
- grid.256304.60000 0004 1936 7400Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303 USA
| | - Yi Li
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| | - Zhu Mei
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| | - Ming-Hui Zou
- grid.256304.60000 0004 1936 7400Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA 30303 USA
| | - Ya-ling Han
- Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016 China
| |
Collapse
|
6
|
Jean-Charles PY, Rajiv V, Sarker S, Han S, Bai Y, Masoudi A, Shenoy SK. A single phenylalanine residue in β-arrestin2 critically regulates its binding to G protein-coupled receptors. J Biol Chem 2022; 298:101837. [PMID: 35307348 PMCID: PMC9052155 DOI: 10.1016/j.jbc.2022.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/05/2022] Open
Abstract
Arrestins and their yeast homologs, arrestin-related trafficking adaptors (ARTs), share a stretch of 29 amino acids called the ART motif. However, the functionality of that motif is unknown. We now report that deleting this motif prevents agonist-induced ubiquitination of β-arrestin2 (β-arr2) and blocks its association with activated G protein–coupled receptors (GPCRs). Within the ART motif, we have identified a conserved phenylalanine residue, Phe116, that is critical for the formation of β-arr2–GPCR complexes. β-arr2 Phe116Ala mutant has negligible effect on blunting β2-adrenergic receptor–induced cAMP generation unlike β-arr2, which promotes rapid desensitization. Furthermore, available structures for inactive and inositol hexakisphosphate 6–activated forms of bovine β-arr2 revealed that Phe116 is ensconced in a hydrophobic pocket, whereas the adjacent Phe117 and Phe118 residues are not. Mutagenesis of Phe117 and Phe118, but not Phe116, preserves GPCR interaction of β-arr2. Surprisingly, Phe116 is dispensable for the association of β-arr2 with its non-GPCR partners. β-arr2 Phe116Ala mutant presents a significantly reduced protein half-life compared with β-arr2 and undergoes constitutive Lys-48-linked polyubiquitination, which tags proteins for proteasomal degradation. We also found that Phe116 is critical for agonist-dependent β-arr2 ubiquitination with Lys-63-polyubiquitin linkages that are known mediators of protein scaffolding and signal transduction. Finally, we have shown that β-arr2 Phe116Ala interaction with activated β2-adrenergic receptor can be rescued with an in-frame fusion of ubiquitin. Taken together, we conclude that Phe116 preserves structural stability of β-arr2, regulates the formation of β-arr2–GPCR complexes that inhibit G protein signaling, and promotes subsequent ubiquitin-dependent β-arr2 localization and trafficking.
Collapse
Affiliation(s)
- Pierre-Yves Jean-Charles
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Vishwaesh Rajiv
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Subhodeep Sarker
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Sangoh Han
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Yushi Bai
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Ali Masoudi
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Sudha K Shenoy
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
7
|
Martínez-Morales JC, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. Roles of Receptor Phosphorylation and Rab Proteins in G Protein-Coupled Receptor Function and Trafficking. Mol Pharmacol 2022; 101:144-153. [PMID: 34969830 DOI: 10.1124/molpharm.121.000429] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
The G protein-coupled receptors form the most abundant family of membrane proteins and are crucial physiologic players in the homeostatic equilibrium, which we define as health. They also participate in the pathogenesis of many diseases and are frequent targets of therapeutic intervention. Considering their importance, it is not surprising that different mechanisms regulate their function, including desensitization, resensitization, internalization, recycling to the plasma membrane, and degradation. These processes are modulated in a highly coordinated and specific way by protein kinases and phosphatases, ubiquitin ligases, protein adaptors, interaction with multifunctional complexes, molecular motors, phospholipid metabolism, and membrane distribution. This review describes significant advances in the study of the regulation of these receptors by phosphorylation and endosomal traffic (where signaling can take place); we revisited the bar code hypothesis and include two additional observations: 1) that different phosphorylation patterns seem to be associated with internalization and endosome sorting for recycling or degradation, and 2) that, surprisingly, phosphorylation of some G protein-coupled receptors appears to be required for proper receptor insertion into the plasma membrane. SIGNIFICANCE STATEMENT: G protein-coupled receptor phosphorylation is an early event in desensitization/signaling switching, endosomal traffic, and internalization. These events seem crucial for receptor responsiveness, cellular localization, and fate (recycling/degradation) with important pharmacological/therapeutic implications. Phosphorylation sites vary depending on the cells in which they are expressed and on the stimulus that leads to such covalent modification. Surprisingly, evidence suggests that phosphorylation also seems to be required for proper insertion into the plasma membrane for some receptors.
Collapse
Affiliation(s)
- Juan Carlos Martínez-Morales
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México (J.C.M.-M., M.T.R.-Á, J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Avanzados-Instituto Politécnico Nacional, Ciudad de México, México (G.R.-C.)
| | - M Teresa Romero-Ávila
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México (J.C.M.-M., M.T.R.-Á, J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Avanzados-Instituto Politécnico Nacional, Ciudad de México, México (G.R.-C.)
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México (J.C.M.-M., M.T.R.-Á, J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Avanzados-Instituto Politécnico Nacional, Ciudad de México, México (G.R.-C.)
| | - Jesús Adolfo García-Sáinz
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, México (J.C.M.-M., M.T.R.-Á, J.A.G.-S.) and Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados, Avanzados-Instituto Politécnico Nacional, Ciudad de México, México (G.R.-C.)
| |
Collapse
|
8
|
Zhang Y, Zhou P, Lu F, Su R, Gong Z. A20-Binding Inhibitor of Nuclear Factor- κB Targets β-Arrestin2 to Attenuate Opioid Tolerance. Mol Pharmacol 2021; 100:170-180. [PMID: 34031190 DOI: 10.1124/molpharm.120.000211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/26/2021] [Indexed: 11/22/2022] Open
Abstract
Opioids play an important role in pain relief, but repeated exposure results in tolerance and dependence. To make opioids more effective and useful, research in the field has focused on reducing the tolerance and dependence for chronic pain relief. Here, we showed the effect of A20-binding inhibitor of nuclear factor-κB (ABIN-1) in modulating morphine function. We used hot-plate tests and conditioned place preference (CPP) tests to show that overexpression of ABIN-1 in the mouse brain attenuated morphine dependence. These effects of ABIN-1 are most likely mediated through the formation of ABIN-1-β-arrestin2 complexes, which accelerate β-arrestin2 degradation by ubiquitination. With the degradation of β-arrestin2, ABIN-1 overexpression also decreased μ opioid receptor (MOR) phosphorylation and internalization after opioid treatment, affecting the β-arrestin2-dependent signaling pathway to regulate morphine tolerance. Importantly, the effect of ABIN-1 on morphine tolerance was abolished in β-arrestin2-knockout mice. Taken together, these results suggest that the interaction between ABIN-1 and β-arrestin2 inhibits MOR internalization to attenuate morphine tolerance, revealing a novel mechanism for MOR regulation. Hence, ABIN-1 may be a therapeutic target to regulate MOR internalization, thus providing a foundation for a novel treatment strategy for alleviating morphine tolerance and dependence. SIGNIFICANCE STATEMENT: A20-binding inhibitor of nuclear factor-κB (ABIN-1) overexpression in the mouse brain attenuated morphine tolerance and dependence. The likely mechanism for this finding is that ABIN-1-β-arrestin2 complex formation facilitated β-arrestin2 degradation by ubiquitination. ABIN-1 targeted β-arrestin2 to regulate morphine tolerance. Therefore, the enhancement of ABIN-1 is an important strategy to prevent morphine tolerance and dependence.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Peilan Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Fengfeng Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zehui Gong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
9
|
Latest update on chemokine receptors as therapeutic targets. Biochem Soc Trans 2021; 49:1385-1395. [PMID: 34060588 PMCID: PMC8286821 DOI: 10.1042/bst20201114] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
The chemokine system plays a fundamental role in a diverse range of physiological processes, such as homeostasis and immune responses. Dysregulation in the chemokine system has been linked to inflammatory diseases and cancer, which renders chemokine receptors to be considered as therapeutic targets. In the past two decades, around 45 drugs targeting chemokine receptors have been developed, yet only three are clinically approved. The challenging factors include the limited understanding of aberrant chemokine signalling in malignant diseases, high redundancy of the chemokine system, differences between cell types and non-specific binding of the chemokine receptor antagonists due to the broad ligand-binding pockets. In recent years, emerging studies attempt to characterise the chemokine ligand–receptor interactions and the downstream signalling protein–protein interactions, aiming to fine tuning to the promiscuous interplay of the chemokine system for the development of precision medicine. This review will outline the updates on the mechanistic insights in the chemokine system and propose some potential strategies in the future development of targeted therapy.
Collapse
|
10
|
Ma TL, Zhou Y, Zhang CY, Gao ZA, Duan JX. The role and mechanism of β-arrestin2 in signal transduction. Life Sci 2021; 275:119364. [PMID: 33741415 DOI: 10.1016/j.lfs.2021.119364] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
β-arrestin2 is a ubiquitously expressed scaffold protein localized on the cytoplasm and plasma membrane. It was originally found to bind to GPCRs, uncoupling G proteins and receptors' binding and inhibiting the signal transduction of the GPCRs. Further investigations have revealed that β-arrestin2 not only mediates the desensitization of GPCRs but also serves as a multifunctional scaffold to mediate receptor internalization, kinase activation, and regulation of various signaling pathways, such as TLR4/NF-κB, MAPK, Wnt, TGF-β, and AMPK/mTOR pathways. β-arrestin2 regulates cell invasion, migration, autophagy, angiogenesis, and anti-inflammatory effects by regulating various signaling pathways, which play a vital role in many physiological and pathological processes. This paper reviews the structure and function of β-arrestin2, the regulation of β-arrestin2 based signaling pathways. The role and mechanism of β-arrestin2 signaling have been delineated in sufficient detail. The prospect of regulating the expression and activity of β-arrestin2 in multisystem diseases holds substantial therapeutic promise.
Collapse
Affiliation(s)
- Tian-Liang Ma
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Hunan Engineering Research Center of Biomedical Metal and Ceramic Impants, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China; Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Zi-Ang Gao
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
| | - Jia-Xi Duan
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
11
|
Nagi K, Kaur S, Bai Y, Shenoy SK. In-frame fusion of SUMO1 enhances βarrestin2's association with activated GPCRs as well as with nuclear pore complexes. Cell Signal 2020; 75:109759. [PMID: 32860951 DOI: 10.1016/j.cellsig.2020.109759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/17/2020] [Accepted: 08/22/2020] [Indexed: 01/11/2023]
Abstract
Small ubiquitin like modifier (SUMO) conjugation or SUMOylation of βarrestin2 promotes its association with the clathrin adaptor protein AP2 and facilitates rapid β2 adrenergic receptor (β2AR) internalization. However, disruption of the consensus SUMOylation site in βarrestin2, did not prevent βarrestin2's association with activated β2ARs, dopamine D2 receptors (D2Rs), angiotensin type 1a receptors (AT1aRs) and V2 vasopressin receptors (V2Rs). To address the role of SUMOylation in the trafficking of βarrestin and GPCR complexes, we generated and characterized a yellow fluorescent protein (YFP) tagged βarrestin2-SUMO1 chimeric protein, which is resistant to de-SUMOylation. In HEK-293 cells, YFP-SUMO1 predominantly localized in the nucleus, whereas YFP-βarrestin2 is cytoplasmic. YFP-βarrestin2-SUMO1 in addition to being cytoplasmic, is localized at the nuclear membrane. Nonetheless, βarrestin2-SUMO1 associated robustly with agonist-activated β2ARs as evaluated by co-immunoprecipitation, confocal microscopy and bioluminescence resonance energy transfer (BRET). βarrestin2-SUMO1 associated strongly with the D2R, which forms transient complexes with βarrestin2. But, βarrestin2-SUMO1 and βarrestin2 showed equivalent binding with the V2R, which forms stable complexes with βarrestin2. βarrestin2 expression level directly correlated with the steady state levels of the unmodified form of RanGAP1, which upon SUMOylation associates with nuclear membrane. On the other hand, βarrestin2-SUMO1 not only localized at the nuclear membrane, but also formed a macromolecular complex with RanGAP1. Taken together, our data suggest that SUMOylation of βarrestin2 promotes its protein interactions at both cell and nuclear membranes. Furthermore, βarrestin2-SUMO1 presents as a useful tool to characterize βarrestin2 recruitment to GPCRs, which form transient and unstable complex with βarrestin2.
Collapse
Affiliation(s)
- Karim Nagi
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA; College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Suneet Kaur
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yushi Bai
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudha K Shenoy
- Department of Medicine, Division of Cardiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Estadella I, Pedrós-Gámez O, Colomer-Molera M, Bosch M, Sorkin A, Felipe A. Endocytosis: A Turnover Mechanism Controlling Ion Channel Function. Cells 2020; 9:E1833. [PMID: 32759790 PMCID: PMC7463639 DOI: 10.3390/cells9081833] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/30/2020] [Accepted: 08/02/2020] [Indexed: 01/08/2023] Open
Abstract
Ion channels (IChs) are transmembrane proteins that selectively drive ions across membranes. The function of IChs partially relies on their abundance and proper location in the cell, fine-tuned by the delicate balance between secretory, endocytic, and degradative pathways. The disruption of this balance is associated with several diseases, such as Liddle's and long QT syndromes. Because of the vital role of these proteins in human health and disease, knowledge of ICh turnover is essential. Clathrin-dependent and -independent mechanisms have been the primary mechanisms identified with ICh endocytosis and degradation. Several molecular determinants recognized by the cellular internalization machinery have been discovered. Moreover, specific conditions can trigger the endocytosis of many IChs, such as the activation of certain receptors, hypokalemia, and some drugs. Ligand-dependent receptor activation primarily results in the posttranslational modification of IChs and the recruitment of important mediators, such as β-arrestins and ubiquitin ligases. However, endocytosis is not a final fate. Once internalized into endosomes, IChs are either sorted to lysosomes for degradation or recycled back to the plasma membrane. Rab proteins are crucial participants during these turnover steps. In this review, we describe the major ICh endocytic pathways, the signaling inputs triggering ICh internalization, and the key mediators of this essential cellular process.
Collapse
Affiliation(s)
- Irene Estadella
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Oriol Pedrós-Gámez
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Magalí Colomer-Molera
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| | - Manel Bosch
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
- Centres Científics i Tecnològics de la Universitat de Barcelona (CCiTUB), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Alexander Sorkin
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, 08028 Barcelona, Spain; (I.E.); (O.P.-G.); (M.C.-M.); (M.B.)
| |
Collapse
|
13
|
Luessen DJ, Sun H, McGinnis MM, Hagstrom M, Marrs G, McCool BA, Chen R. Acute ethanol exposure reduces serotonin receptor 1A internalization by increasing ubiquitination and degradation of β-arrestin2. J Biol Chem 2019; 294:14068-14080. [PMID: 31366729 DOI: 10.1074/jbc.ra118.006583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 07/23/2019] [Indexed: 11/06/2022] Open
Abstract
Acute alcohol exposure alters the trafficking and function of many G-protein-coupled receptors (GPCRs) that are associated with aberrant behavioral responses to alcohol. However, the molecular mechanisms underlying alcohol-induced changes in GPCR function remain unclear. β-Arrestin is a key player involved in the regulation of GPCR internalization and thus controls the magnitude and duration of GPCR signaling. Although β-arrestin levels are influenced by various drugs of abuse, the effect of alcohol exposure on β-arrestin expression and β-arrestin-mediated GPCR trafficking is poorly understood. Here, we found that acute ethanol exposure increases β-arrestin2 degradation via its increased ubiquitination in neuroblastoma-2a (N2A) cells and rat prefrontal cortex (PFC). β-Arrestin2 ubiquitination was likely mediated by the E3 ligase MDM2 homolog (MDM2), indicated by an increased coupling between β-arrestin2 and MDM2 in response to acute ethanol exposure in both N2A cells and rat PFC homogenates. Importantly, ethanol-induced β-arrestin2 reduction was reversed by siRNA-mediated MDM2 knockdown or proteasome inhibition in N2A cells, suggesting β-arrestin2 degradation is mediated by MDM2 through the proteasomal pathway. Using serotonin 5-HT1A receptors (5-HT1ARs) as a model receptor system, we found that ethanol dose-dependently inhibits 5-HT1AR internalization and that MDM2 knockdown reverses this effect. Moreover, ethanol both reduced β-arrestin2 levels and delayed agonist-induced β-arrestin2 recruitment to the membrane. We conclude that β-arrestin2 dysregulation by ethanol impairs 5-HT1AR trafficking. Our findings reveal a critical molecular mechanism underlying ethanol-induced alterations in GPCR internalization and implicate β-arrestin as a potential player mediating behavioral responses to acute alcohol exposure.
Collapse
Affiliation(s)
- Deborah J Luessen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Haiguo Sun
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Molly M McGinnis
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Michael Hagstrom
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Glen Marrs
- Center for Molecular Signaling, Department of Biology, Wake Forest University, Winston Salem, North Carolina 27106
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| | - Rong Chen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston Salem, North Carolina 27157 .,Center for Molecular Signaling, Department of Biology, Wake Forest University, Winston Salem, North Carolina 27106.,Center for the Neurobiology of Addiction Treatment, Wake Forest School of Medicine, Winston Salem, North Carolina 27157
| |
Collapse
|
14
|
Bagnato A, Rosanò L. New Routes in GPCR/β-Arrestin-Driven Signaling in Cancer Progression and Metastasis. Front Pharmacol 2019; 10:114. [PMID: 30837880 PMCID: PMC6390811 DOI: 10.3389/fphar.2019.00114] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Tumor cells acquire invasive and metastatic behavior by sensing changes in the localization and activation of signaling pathways, which in turn determine changes in actin cytoskeleton. The core-scaffold machinery associated to β-arrestin (β-arr) is a key mechanism of G-protein coupled receptors (GPCR) to achieve spatiotemporal specificity of different signaling complexes driving cancer progression. Within different cellular contexts, the scaffold proteins β-arr1 or β-arr2 may now be considered organizers of protein interaction networks involved in tumor development and metastatic dissemination. Studies have uncovered the importance of the β-arr engagement with a growing number of receptors, signaling molecules, cytoskeleton regulators, epigenetic modifiers, and transcription factors in GPCR-driven tumor promoting pathways. In many of these molecular complexes, β-arrs might provide a physical link to active dynamic cytoskeleton, permitting cancer cells to adapt and modify the tumor microenvironment to promote the metastatic spread. Given the complexity and the multidirectional β-arr-driven signaling in cancer cells, therapeutic targeting of specific GPCR/β-arr molecular mechanisms is an important avenue to explore when considering future new therapeutic options. The focus of this review is to integrate the most recent developments and exciting findings of how highly connected components of β-arr-guided molecular connections to other pathways allow precise control over multiple signaling pathways in tumor progression, revealing ways of therapeutically targeting the convergent signals in patients.
Collapse
Affiliation(s)
- Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
15
|
New insights into the regulation of the actin cytoskeleton dynamics by GPCR/β-arrestin in cancer invasion and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:129-155. [DOI: 10.1016/bs.ircmb.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Abstract
Ubiquitination of G protein-coupled receptors (GPCRs) is an important dynamic posttranslational modification that has been linked to the intracellular trafficking of internalized GPCRs to lysosomes. Ubiquitination of GPCRs is mediated by specific E3 ubiquitin ligases that are scaffolded by the adaptor proteins called β-arrestins. Traditionally, detection of GPCR ubiquitination is achieved by using ubiquitin antibodies to Western blot immunoprecipitates of detergent-solubilized GPCRs expressed in heterologous cells. However, studies have also shown that bioluminescence resonance energy transfer (BRET)-based techniques can reveal ubiquitination of GPCRs in intact cells and in real time. This chapter describes a step-by-step protocol to evaluate ubiquitination of GPCRs using the BRET methodology.
Collapse
|
17
|
Rajagopal S, Shenoy SK. GPCR desensitization: Acute and prolonged phases. Cell Signal 2017; 41:9-16. [PMID: 28137506 DOI: 10.1016/j.cellsig.2017.01.024] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/25/2017] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transduce a wide array of extracellular signals and regulate virtually every aspect of physiology. While GPCR signaling is essential, overstimulation can be deleterious, resulting in cellular toxicity or uncontrolled cellular growth. Accordingly, nature has developed a number of mechanisms for limiting GPCR signaling, which are broadly referred to as desensitization, and refer to a decrease in response to repeated or continuous stimulation. Short-term desensitization occurs over minutes, and is primarily associated with β-arrestins preventing G protein interaction with a GPCR. Longer-term desensitization, referred to as downregulation, occurs over hours to days, and involves receptor internalization into vesicles, degradation in lysosomes and decreased receptor mRNA levels through unclear mechanisms. Phosphorylation of the receptor by GPCR kinases (GRKs) and the recruitment of β-arrestins is critical to both these short- and long-term desensitization mechanisms. In addition to phosphorylation, both the GPCR and β-arrestins are modified post-translationally in several ways, including by ubiquitination. For many GPCRs, receptor ubiquitination promotes degradation of agonist-activated receptors in the lysosomes. Other proteins also play important roles in desensitization, including phosphodiesterases, RGS family proteins and A-kinase-anchoring proteins. Together, this intricate network of kinases, ubiquitin ligases, and adaptor proteins orchestrate the acute and prolonged desensitization of GPCRs.
Collapse
Affiliation(s)
| | - Sudha K Shenoy
- Department of Medicine (Cardiology), Durham, NC, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|